Tag Archives: mini hydraulic

China wholesaler Mobile Portable Mini Hydraulic Power Pack Unit DC 12V Pump Motor vacuum pump ac system

Product Description

Product Description

 

Hydraulic power station  WP13-30E Electric CHINAMFG WP13-30 equipped with a 7.5kW motor, and comes in a 20 lpm and a 30 lpm version, with maximum performance ,Compact in size and electric driven,transportation in any car is done easily  The perfect power station for professional and specialized companies within concrete drilling, cutting ,breaker,and others. The strong steel cage protects the hydraulic system and all the components inside, which makes it work even under the toughest conditions. Because the motor and the electric box are approved respectively.

Main Features
• 7.5KW 380V 50Hz Electric Engine
• Folding handle and removable wheels
• Air-to-oil cooler with high-speed blower
• Diameter about 20cm CHINAMFG Tires are easy to move on rough ground.
• Overload feedback system saving fuel, reducing noise and extending service life
• Hydraulic oil level indicator

 

Detailed Photos

                       Gasoline engine                                                  Diesel Engine                                                                  Electric Engine                                                                   

Product Parameters

 

Model No. Engine
(mm)
Weight
(kg)
Size
(mm)
Hydraulic Flow
(lpm)
Max.Pressure
(bar)
Hydraulic Oil
(L)
Fuel Tank
(L)
Electric Start
Optional
WP13-30 Briggs & Stratton13.5HP 75 870*580*600 20-30 172 13 6.5 Optional
WP13-30D KM195F 118 780*510*600 20-30 172 13 6.5 Optional 
WP13-30E Electric Machine 7.5kw 110 870*580*600 20-30 172 13 / Yes
WP18-40 Briggs & Stratton 18HP 118 900*580*750 30-40 172 16 22 Yes
WP18-40D  KM290F 190 1045*705*792 30-40 172 16 22 Yes
WP18-40Twin Briggs & Stratton 18HP 116 900*590*740 2*20/1*40 172 16 15 Yes
WP20-40 Honda 23HP 130 1015*600*755 42 172 25 15 Yes
WP23-45 Twin 24HP/25HP 137 1030*580*820 2*22.5/1*45 172 16 22 Yes
WP30-60 Twin Briggs & Stratton27HP 168 1571*640*810 2*20/2*30/1*60 172 13 23 Yes
WP36-80 Twin Briggs & Stratton 36HP 190 1130*700*930 2*30/2*40/1*80 172 21 30 Yes
WP37-90 Twin Yanmar 37HP 520 1430*800*1200 2*45/1*90 250 60 60 Yes

 

Certifications

Packaging & Shipping

Company Profile

Our Advantages

FAQ

Q1: Why choose us WIPIN?
A1: We focus on HYDRAULIC POWER PACK and HYDRAULIC TOOLS since 2571,our aim is “HYDRAULIC EXPERT” in this industry.

Q2: What is your advantage?
A2: Wonderful quality,competitive price and experienced engineer,etc.

Q3: What is the guarantee?
A3: We offer 1 years guarantee for customer.

Q4: Do you offer customized for products?
A4: Yes,we do.

Q5: What is your quality control system?
A5: Our product achieve the ISO 9001 Quality Management Standard and CE certification provided.

Q6: What is your terms of payment?
A6: T/T, Global PAY,Western union,30% T/T in advance,balance before shipment etc.

Q7: Can you do OEM for me?
A7: We accept all OEM orders,just contact us with detailed requirement. we will offer you a reasonable price and make samples for you ASAP.

Q8: How can I place the order?
A8: 1. Direct order from Made-in-China.
       2. CHINAMFG the PI → Pay (1. Sample in stock with full payment. )   → Arrange shipping
                              (2.Large order, 30% deposit, arrange production.) →Balance payment→Arrange Shipping.

More details please discuss with Luna.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO9001
Pressure: High Pressure
Work Temperature: Normal Temperature
Samples:
US$ 3750/set
1 set(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

What are the key differences between brushed and brushless DC motors?

Brushed and brushless DC motors are two distinct types of motors that differ in their construction, operation, and performance characteristics. Here’s a detailed explanation of the key differences between brushed and brushless DC motors:

1. Construction:

Brushed DC Motors: Brushed DC motors have a relatively simple construction. They consist of a rotor with armature windings and a commutator, and a stator with permanent magnets or electromagnets. The commutator and brushes make physical contact to provide electrical connections to the armature windings.

Brushless DC Motors: Brushless DC motors have a more complex construction. They typically consist of a stationary stator with permanent magnets or electromagnets and a rotor with multiple coils or windings. The rotor does not have a commutator or brushes.

2. Commutation:

Brushed DC Motors: In brushed DC motors, the commutator and brushes are responsible for the commutation process. The brushes make contact with different segments of the commutator, reversing the direction of the current through the armature windings as the rotor rotates. This switching of the current direction generates the necessary torque for motor rotation.

Brushless DC Motors: Brushless DC motors use electronic commutation instead of mechanical commutation. The commutation process is managed by an external electronic controller or driver. The controller determines the timing and sequence of energizing the stator windings based on the rotor position, allowing for precise control of motor operation.

3. Efficiency:

Brushed DC Motors: Brushed DC motors tend to have lower efficiency compared to brushless DC motors. This is primarily due to the energy losses associated with the brushes and commutation process. The friction and wear between the brushes and commutator result in additional power dissipation and reduce overall motor efficiency.

Brushless DC Motors: Brushless DC motors are known for their higher efficiency. Since they eliminate the use of brushes and commutators, there are fewer energy losses and lower frictional losses. The electronic commutation system allows for precise control of the motor’s operation, maximizing efficiency and reducing power consumption.

4. Maintenance:

Brushed DC Motors: Brushed DC motors require regular maintenance due to the wear and tear of the brushes and commutator. The brushes need periodic replacement, and the commutator requires cleaning to maintain proper electrical contact. The maintenance requirements contribute to additional costs and downtime for brushed DC motors.

Brushless DC Motors: Brushless DC motors have a relatively maintenance-free operation. As they do not have brushes or commutators, there is no need for brush replacement or commutator cleaning. This results in reduced maintenance costs and increased reliability of brushless DC motors.

5. Speed Control:

Brushed DC Motors: Brushed DC motors offer simpler speed control options. The speed can be controlled by adjusting the applied voltage or by varying the resistance in the armature circuit. This allows for relatively straightforward speed regulation.

Brushless DC Motors: Brushless DC motors provide more advanced and precise speed control capabilities. The speed can be controlled through the electronic commutation system by adjusting the timing and sequence of the stator windings’ energization. This allows for precise control of the motor’s speed and acceleration.

These key differences between brushed and brushless DC motors make each type suitable for different applications depending on factors such as efficiency requirements, maintenance considerations, and control complexity.

dc motor

Can you explain the concept of armature winding in a DC motor?

In a DC (Direct Current) motor, the armature winding is a crucial component that plays a significant role in the motor’s operation. It is responsible for producing the magnetic field that interacts with the stator’s magnetic field, resulting in the generation of torque and the rotation of the motor. Here’s a detailed explanation of the concept of armature winding in a DC motor:

The armature winding is a coil or set of coils made of insulated wire that is wound around the armature core, which is typically a laminated iron core. The armature winding is located on the rotor of the motor and is connected to the commutator. It carries the armature current, which is the current that flows through the winding to create the magnetic field. The armature winding is usually made of copper wire due to its excellent electrical conductivity.

When a current passes through the armature winding, it generates a magnetic field around the winding according to Ampere’s circuital law. The direction of the magnetic field is determined by the right-hand rule, where the thumb represents the direction of the current flow, and the curled fingers indicate the direction of the magnetic field.

The interaction between the magnetic field produced by the armature winding and the magnetic field produced by the stator’s permanent magnets or electromagnets creates a mechanical force, known as torque. This torque causes the rotor to rotate, converting electrical energy into mechanical motion.

The armature winding is designed in such a way that it produces a multipole magnetic field. The number of poles in the winding corresponds to the number of poles in the stator’s magnetic field. This ensures that the magnetic fields of the armature and stator are properly aligned for efficient torque generation.

The armature winding is connected to the commutator, which is a cylindrical ring with multiple segments that are insulated from each other. As the rotor spins, the brushes make physical contact with different segments of the commutator, effectively reversing the direction of the current in the armature winding. This reversal of current flow ensures that the torque generated in the armature winding is always in the same direction, enabling continuous rotation of the rotor.

The design and configuration of the armature winding, including the number of turns, wire gauge, and connection scheme, can influence the motor’s performance characteristics, such as torque, speed, and efficiency. Optimal winding design is crucial for achieving the desired motor performance in various applications.

In summary, the armature winding in a DC motor is responsible for producing the magnetic field that interacts with the stator’s magnetic field, resulting in the generation of torque and the rotation of the motor. It is a critical component that facilitates the conversion of electrical energy into mechanical motion.

dc motor

Are there innovations or emerging technologies in the field of DC motor design?

Yes, there have been several innovations and emerging technologies in the field of DC (Direct Current) motor design. These advancements aim to improve the performance, efficiency, reliability, and overall capabilities of DC motors. Here’s a detailed explanation of some notable innovations and emerging technologies in DC motor design:

1. Brushless DC Motors:

One significant advancement in DC motor design is the development and widespread adoption of brushless DC motors (BLDC motors). Unlike traditional DC motors that use brushes for commutation, BLDC motors employ electronic commutation through the use of permanent magnets and motor controller circuits. This eliminates the need for brushes, reducing maintenance requirements and improving overall motor efficiency and lifespan. BLDC motors offer higher torque density, smoother operation, better speed control, and improved energy efficiency compared to conventional brushed DC motors.

2. High-Efficiency Materials:

The use of high-efficiency materials in DC motor design has been an area of focus for improving motor performance. Advanced magnetic materials, such as neodymium magnets, have allowed for stronger and more compact motor designs. These materials increase the motor’s power density, enabling higher torque output and improved efficiency. Additionally, advancements in materials used for motor windings and core laminations have reduced electrical losses and improved overall motor efficiency.

3. Power Electronics and Motor Controllers:

Advancements in power electronics and motor control technologies have greatly influenced DC motor design. The development of sophisticated motor controllers and efficient power electronic devices enables precise control of motor speed, torque, and direction. These technologies have resulted in more efficient and reliable motor operation, reduced energy consumption, and enhanced motor performance in various applications.

4. Integrated Motor Systems:

Integrated motor systems combine the motor, motor controller, and associated electronics into a single unit. These integrated systems offer compact designs, simplified installation, and improved overall performance. By integrating the motor and controller, issues related to compatibility and communication between separate components are minimized. Integrated motor systems are commonly used in applications such as robotics, electric vehicles, and industrial automation.

5. IoT and Connectivity:

The integration of DC motors with Internet of Things (IoT) technologies and connectivity has opened up new possibilities for monitoring, control, and optimization of motor performance. By incorporating sensors, actuators, and connectivity features, DC motors can be remotely monitored, diagnosed, and controlled. This enables predictive maintenance, energy optimization, and real-time performance adjustments, leading to improved efficiency and reliability in various applications.

6. Advanced Motor Control Algorithms:

Advanced motor control algorithms, such as sensorless control and field-oriented control (FOC), have contributed to improved performance and efficiency of DC motors. Sensorless control techniques eliminate the need for additional sensors by leveraging motor current and voltage measurements to estimate rotor position. FOC algorithms optimize motor control by aligning the magnetic field with the rotor position, resulting in improved torque and efficiency, especially at low speeds.

These innovations and emerging technologies in DC motor design have revolutionized the capabilities and performance of DC motors. Brushless DC motors, high-efficiency materials, advanced motor control techniques, integrated motor systems, IoT connectivity, and advanced control algorithms have collectively contributed to more efficient, reliable, and versatile DC motor solutions across various industries and applications.

China wholesaler Mobile Portable Mini Hydraulic Power Pack Unit DC 12V Pump Motor   vacuum pump ac system	China wholesaler Mobile Portable Mini Hydraulic Power Pack Unit DC 12V Pump Motor   vacuum pump ac system
editor by CX 2024-02-23

China wholesaler China Made Omm/Omp/OMR /Omh/Omsy/Omt/Omv Type Hydraulic Motor for Mini Excavator Hydraulic CHINAMFG Cycloid Orbit Small Motor supplier

Product Description

Product Description

Industrial Hydraulic Orbit Motor BMR OMR series
 

Type BMR
BMRS
36
BMR
BMRS
50
BMR
BMRS
80
BMR
BMRS
100
BMR
BMRS
125
BMR
BMRS
160
BMR
BMRS
200
BMR
BMRS
250
BMR
BMRS
315
BMR
BMRS
375
Geometric displacement (cm3 /rev.) 36 51.7 81.5 102 127.2 157.2 194.5 253.3 317.5 381.4
Max. speed (rpm) cont. 1085 960 750 600 475 378 310 240 190 155
int. 1220 1150 940 750 600 475 385 300 240 190
Max. torque (N·m) cont. 72 100 195 240 300 360 360 390 390 365
int. 83 126 220 280 340 430 440 490 535 495
peak 105 165 270 320 370 460 560 640 650 680
Max. output (kW) cont. 8.5 9.5 12.5 13 12.5 12.5 10 7 6 5
int. 9.8 11.2 15 15 14.5 14 13 9.5 9 8
Max. pressure drop (MPa) cont. 14 14 17.5 17.5 17.5 16.5 13 11 9 7
int. 16.5 17.5 20 20 20 20 17.5 15 13 10
peak 22.5 22.5 22.5 22.5 22.5 22.5 22.5 20 17.5 15
Max. flow (L/min) cont. 40 50 60 60 60 60 60 60 60 60
int. 45 60 75 75 75 75 75 75 75 75
Weight (kg) 6.5 6.7 6.9 7 7.3 7.6 8 8.5 9 9.5

 

Model available:

BM, BMM, BMR, BMP, BMH, BM5, BMRS, BME, BMPW
 

Detailed Photos

 

 

 

Ordering Codes

 

 

 

Installation sizes

 

Company Profile

 

HangZhou CHINAMFG Hydraulics Co., Ltd is a scientific and innovative company integrating R & D, production, sales and service of high-quality hydraulic pumps, motors, valves and other hydraulic products.

CHINAMFG mainly provides CHINAMFG A4VSO, A10VSO, A4VG, A7VO, A11VO and A2FO series high-pressure piston pumps, CHINAMFG PGH3, PGH4 and PGH5 series high-pressure gear pumps, A4VM, A6VM, A2FM and A4FM series piston motors; BM3, BM4,BM5, BM6 and other orbit motors. Through the honing and innovation of CHINAMFG people, CHINAMFG series products can not only perfectly replace the original products, but also realize the seamless exchange and connection of all the parts. Moreover, it has lower noise, higher volume efficiency and longer service life, so as to completely surpass the quality of the original factory, and withstand the severe test of the market, has been exported to more than 70 countries and regions around the world.

CHINAMFG series products are widely used in engineering machinery, plastic machinery, metallurgical machinery, environmental sanitation machinery, mining machinery, marine machinery, packaging machinery, port machinery and various hydraulic equipment, which are highly praised by clients.

CHINAMFG has the world advanced CNC processing equipment, vertical and horizontal machining centers, high-precision double-sided grinding, groove grinding, curve grinding and full-automatic machining centers. With 12 independent testing laboratories, the products have been comprehensively inspected before shipment to ensure that CHINAMFG series products achieve high precision, high quality and zero defects.

“Optimizing the performance of hydraulic products, improving the quality of hydraulic products and leading the comprehensive upgrading of hydraulic product consumption” is not only the responsibility and mission of Hyleman, but also the Chinese dream of Hyleman. CHINAMFG are willing to work with people of insight to make unremitting efforts to realize this dream.

Warmly welcome all friends to visit the beautiful port city – HangZhou to discuss cooperation and seek common development with Hyleman!

Exhibitions

 

Packages

 

Our Advantages

Why Choose HYLEMAN?

1. Top Quality
Depend on 15 years experience at hydraulic pumps design, research, development and manufacturing, we have a top quality compared with domestic and overseas manufacturers, all of our products are with 1 year warranty time.

2. Strict Quality Control System
We have the most strict quality control system, all of our products are 100% tested before shipment and each of them has 1 tracking code in order to make sure they are with good quality to our customers.

3. Advanced machinery equipment
All the machines we have are new CNC machines we imported from Germany and Japan in order to reach more higher demand at the products accuracy.

4. Strong Technical team
Our technical team all have more than 20 years experience at pumps design and engineering, our chief engineer has more than 40 years experience at pumps design. We have 1 15 persons research team, responsible for pumps improvement research and new products development.

5. Competitive Price
Because of good management, our price is more competitive than the original products, more reasonable than most of the domestic suppliers.

6. Fast Delivery time
We can ship small orders within 1 week, for big orders such as within 500 PCS pumps or cartridge kits usually we can make shipment within 1 month.

7. Warranty Period
All of our products are within 1 year warranty time after the shipment from our factory.

8. Considerate Service
We can provide technical support at any time if our customers meet any issue during the using, we will provide solutions at the soonest time.

9. Long development strategy
We would like to establish a long time strategy cooperation relationship with our customers, to promote HYLEMAN brand together, support and train the potential customer to be our agent at each country and region all over the world.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: 1 Year
Type: Motor
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

high quality equal with original
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China wholesaler China Made Omm/Omp/OMR /Omh/Omsy/Omt/Omv Type Hydraulic Motor for Mini Excavator Hydraulic CHINAMFG Cycloid Orbit Small Motor   supplier China wholesaler China Made Omm/Omp/OMR /Omh/Omsy/Omt/Omv Type Hydraulic Motor for Mini Excavator Hydraulic CHINAMFG Cycloid Orbit Small Motor   supplier
editor by CX 2024-02-06

China best CHINAMFG Hydraulic Orbit Gear Motor Char-Lynn Char Lynn H/S/2K/4K/6K/2000/4000/6000 Orbital Motor for Mini Excavator Bm3 Omm BMP Bmm OMR vacuum pump oil

Product Description

Parameter Sheet
 

Displacement(ml/r)
 
  100 160 200 250 315 400
Flow(LPM) Cont. 58 58 58 58 58 58
Int. 68 68 68 68 68 68
Speed(RPM) Cont. 551 344 276 220 175 140
Int. 646 404 323 258 205 162
Pressure(Mpa) Cont. 14 14 12.5 11 9 9
Int. 17 17 15 13 11 10
Torque(N*m) Cont. 178 285 318 350 360 418
Int. 216 346 382 413 400 464

 
Detail Images 
 

Applicable Scene

Our Advantage

1.Quick response within 12 hours 

2.Accept small order(MOQ:1pcs) 

3.Custom service.Unusual packaging,standard packing or as customer required 

4.Excellent after-sales service 

5.Strict quality control system.100% factory testing and inspection personnel in accordance with international standards for the high-frequency sampling, to ensure the quality of products manufactured

6.Accept ODM&OEM
Factory Show&Production Details

Packing&Delivery&After-sale

1.Standard wooden case or cartonbox
2.Safety for long-distance transportation
3.All of the productions will be checked carefully before delivery
Pre-sales Service
1. Inquiry and consulting support
2. Sample testing support
3. Recommend the most suitable machine according to customer’s purpose
4. Factory visiting welcomed
After-sales Service
1. Training how to install the machine
2. Training how to use the machine
3. Warranty 1 year
4. Engineers available to service machinery oversea

FAQ
Q:1.What’s your main application?
 –Hydraulic Orbit Motors
 –Electric Hydraulic Hole Punchers
 –Hydraulic Winches
–Mini Excavators
 Q:2.What is the MOQ? –MOQ:1pcs.
 Q:3.How long is your delivery time?
–Generally it is 2-3 days if the goods are in stock. or it is 7-15 days .if the goods are not in stock, it is according to quantity.
Q:5.What payment method is accepted?
–T/T,L/C,Paypal,Western union,Trade assurance,VISA
Q:6.How to Place your order ?

1).Tell us Model number ,quantity and other special requirements.

2).Proforma Invoice will be made and send for your approval.
3).Productions will be arranged CHINAMFG receipt of your approval and payment or deposit.
4).Goods will be delivered as stated on the proforma invoice.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Training/Online Support/Changing Spare Parts
Warranty: 1 Year
Type: Motor
Samples:
US$ 88/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China best CHINAMFG Hydraulic Orbit Gear Motor Char-Lynn Char Lynn H/S/2K/4K/6K/2000/4000/6000 Orbital Motor for Mini Excavator Bm3 Omm BMP Bmm OMR   vacuum pump oil	China best CHINAMFG Hydraulic Orbit Gear Motor Char-Lynn Char Lynn H/S/2K/4K/6K/2000/4000/6000 Orbital Motor for Mini Excavator Bm3 Omm BMP Bmm OMR   vacuum pump oil
editor by CX 2024-02-01

China Hydraulic Motor Hydraulic Planetary Gear Motor Orbit Orbital Motor Wheel Motor for Mini Excavator Rotation Motor Wheel Motor motor efficiency

Product Description

Parameter Sheet
 

Displacement(ml/r)
 
  50 sixty three eighty 100 a hundred twenty five 160 200 250 315 400
Flow(LPM) Cont. 38 forty five fifty five fifty five fifty five fifty five fifty five fifty five fifty five 55
Int. 45 53 sixty five sixty five 65 65 65 sixty five 65 sixty five
Speed(RPM) Cont. 684 643 618 500 four hundred 320 255 202 a hundred and sixty a hundred twenty five
Int. 810 757 730 590 472 378 three hundred 240 a hundred ninety 148
Pressure(Mpa) Cont. 12.5 twelve.5 twelve.5 12.5 12.five 12.five 11 11 10 nine
Int. 15 fifteen 15 15 15 15 twelve.5 12.five twelve.5 eleven
Torque(N*m) Cont. seventy four ninety three 124 155 193 248 273 340 375 430
Int. 89 109 one hundred forty five 182 228 294 310 388 469 496

Element Images 

Applicable Scene

Our Edge

one.Quick response inside of twelve hours 

2.Acknowledge modest order(MOQ:1pcs) 

3.Custom provider.Abnormal packaging,normal packing or as customer required 

4.Superb right after-sales service 

5.Stringent top quality handle system.100% factory tests and inspection personnel in accordance with worldwide requirements for the large-frequency sampling, to make sure the top quality of items made

six.Acknowledge ODM&OEM
Manufacturing unit Demonstrate&Manufacturing Details

Packing&Delivery&Right after-sale

1.Normal picket situation or cartonbox
two.Security for extended-distance transportation
three.All of the productions will be checked cautiously just before supply
Pre-income Provider
1. Inquiry and consulting assist
two. Sample screening help
3. Recommend the most suited equipment according to customer’s purpose
4. Factory browsing welcomed
After-product sales Provider
1. Instruction how to install the machine
2. Education how to use the machine
3. Warranty 1 calendar year
four. Engineers accessible to services machinery oversea

FAQ
Q:1.What is actually your major software?
 –Hydraulic Orbit Motors
 –Electrical Hydraulic Hole Punchers
 –Hydraulic Winches
–Mini Excavators
 Q:2.What is the MOQ? –MOQ:1pcs.
 Q:three.How prolonged is your shipping time?
–Typically it is 2-3 times if the merchandise are in inventory. or it is 7-fifteen days .if the products are not in inventory, it is in accordance to quantity.
Q:5.What payment approach is approved?
–T/T,L/C,Paypal,Western union,Trade assurance,VISA
Q:6.How to Location your order ?

  1. .Inform us Design quantity ,amount and other particular requirements.

two).Proforma Bill will be manufactured and deliver for your approval.
three).Productions will be arranged upon receipt of your approval and payment or deposit.
4).Products will be shipped as mentioned on the proforma bill.

 

After-sales Service: Training/Online Support/Changing Spare Parts
Warranty: 1 Year
Type: Motor
Application: Excavator
Certification: CE, ISO9001: 2000
Condition: New
Samples:
US$ 98/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request