Tag Archives: automatic sliding door motor

China manufacturer CHINAMFG Slg51703 Automatic Sliding Door Motor AC DC for 800kg Sliding Gate vacuum pump for ac

Product Description


Product description

Installation drawing

Safety Instruction

Please ensure that the using power voltage matches with the supply voltage of gate opener (AC110V or AC220V); kids are forbidden to touch the control devices or the remote-control unit. The remote-control unit is controlled by a single button mode or 3 button mode (please refer to the instructions of the remote control in accordance with the actual gate opener type). The indicator light on the remote-control unit will flicker when the button on it is pressed. Main engine and gate can be unlocked by disengagement wrench and the gate can move with manual operation after disengagement. Please ensure that no 1 is around the main engine or gate when the switch is operated and it is usually demanded to examine the stability of installation. Please temporarily stop using if the main engine needs repairing or regulation.

Our Exhibition
Company profile
Certification

CE-SLG5280X-LVD

CE-SLG5280X-EMC

FAQ

1. How can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.What can you buy from us?
Transmitter,Tubular Motor Receiver,Sliding Gate Opener,Garage Door Opener,Photocell

3. Why should you buy from us not from other suppliers?
CHINAMFG is professional designer and qualified manufacturer of the automatic door control systems.We have 15 years experience We
have sliding/garage/swing/rolling shutter opener and control systems,transmitters,receivers,photocell,flash lamp,keypad etc.

Q4.How can i get a price of needed garage door opener?
A: Please give the exactly size and quantity of your required door. We can give you a detail quotation based on your requirements.

Q4.We want to be your agent of our area. How to apply for this?
A: Please send your ideal and your profile to any e-mails of us .Let’s talk more.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online
Warranty: Online
Structure: Wheeled
Samples:
US$ 98/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

How does the speed control of a DC motor work, and what methods are commonly employed?

The speed control of a DC (Direct Current) motor is essential for achieving precise control over its rotational speed. Various methods can be employed to regulate the speed of a DC motor, depending on the specific application requirements. Here’s a detailed explanation of how speed control of a DC motor works and the commonly employed methods:

1. Voltage Control:

One of the simplest methods to control the speed of a DC motor is by varying the applied voltage. By adjusting the voltage supplied to the motor, the electromotive force (EMF) induced in the armature windings can be controlled. According to the principle of electromagnetic induction, the speed of the motor is inversely proportional to the applied voltage. Therefore, reducing the voltage decreases the speed, while increasing the voltage increases the speed. This method is commonly used in applications where a simple and inexpensive speed control mechanism is required.

2. Armature Resistance Control:

Another method to control the speed of a DC motor is by varying the armature resistance. By inserting an external resistance in series with the armature windings, the total resistance in the circuit increases. This increase in resistance reduces the armature current, thereby reducing the motor’s speed. Conversely, reducing the resistance increases the armature current and the motor’s speed. However, this method results in significant power loss and reduced motor efficiency due to the dissipation of excess energy as heat in the external resistance.

3. Field Flux Control:

Speed control can also be achieved by controlling the magnetic field strength of the motor’s stator. By altering the field flux, the interaction between the armature current and the magnetic field changes, affecting the motor’s speed. This method can be accomplished by adjusting the field current through the field windings using a field rheostat or by employing a separate power supply for the field windings. By increasing or decreasing the field flux, the speed of the motor can be adjusted accordingly. This method offers good speed regulation and efficiency but requires additional control circuitry.

4. Pulse Width Modulation (PWM):

Pulse Width Modulation is a widely used technique for speed control in DC motors. It involves rapidly switching the applied voltage on and off at a high frequency. The duty cycle, which represents the percentage of time the voltage is on, is varied to control the effective voltage applied to the motor. By adjusting the duty cycle, the average voltage across the motor is modified, thereby controlling its speed. PWM provides precise speed control, high efficiency, and low power dissipation. It is commonly employed in applications such as robotics, industrial automation, and electric vehicles.

5. Closed-Loop Control:

In closed-loop control systems, feedback from the motor’s speed or other relevant parameters is used to regulate the speed. Sensors such as encoders or tachometers measure the motor’s actual speed, which is compared to the desired speed. The difference, known as the error signal, is fed into a control algorithm that adjusts the motor’s input voltage or other control parameters to minimize the error and maintain the desired speed. Closed-loop control provides excellent speed regulation and accuracy, making it suitable for applications that require precise speed control, such as robotics and CNC machines.

These methods of speed control provide flexibility and adaptability to various applications, allowing DC motors to be effectively utilized in a wide range of industries and systems.

dc motor

Can you explain the concept of armature winding in a DC motor?

In a DC (Direct Current) motor, the armature winding is a crucial component that plays a significant role in the motor’s operation. It is responsible for producing the magnetic field that interacts with the stator’s magnetic field, resulting in the generation of torque and the rotation of the motor. Here’s a detailed explanation of the concept of armature winding in a DC motor:

The armature winding is a coil or set of coils made of insulated wire that is wound around the armature core, which is typically a laminated iron core. The armature winding is located on the rotor of the motor and is connected to the commutator. It carries the armature current, which is the current that flows through the winding to create the magnetic field. The armature winding is usually made of copper wire due to its excellent electrical conductivity.

When a current passes through the armature winding, it generates a magnetic field around the winding according to Ampere’s circuital law. The direction of the magnetic field is determined by the right-hand rule, where the thumb represents the direction of the current flow, and the curled fingers indicate the direction of the magnetic field.

The interaction between the magnetic field produced by the armature winding and the magnetic field produced by the stator’s permanent magnets or electromagnets creates a mechanical force, known as torque. This torque causes the rotor to rotate, converting electrical energy into mechanical motion.

The armature winding is designed in such a way that it produces a multipole magnetic field. The number of poles in the winding corresponds to the number of poles in the stator’s magnetic field. This ensures that the magnetic fields of the armature and stator are properly aligned for efficient torque generation.

The armature winding is connected to the commutator, which is a cylindrical ring with multiple segments that are insulated from each other. As the rotor spins, the brushes make physical contact with different segments of the commutator, effectively reversing the direction of the current in the armature winding. This reversal of current flow ensures that the torque generated in the armature winding is always in the same direction, enabling continuous rotation of the rotor.

The design and configuration of the armature winding, including the number of turns, wire gauge, and connection scheme, can influence the motor’s performance characteristics, such as torque, speed, and efficiency. Optimal winding design is crucial for achieving the desired motor performance in various applications.

In summary, the armature winding in a DC motor is responsible for producing the magnetic field that interacts with the stator’s magnetic field, resulting in the generation of torque and the rotation of the motor. It is a critical component that facilitates the conversion of electrical energy into mechanical motion.

dc motor

What are the advantages and disadvantages of using DC motors in automotive applications?

DC (Direct Current) motors have been used in automotive applications for many years, although they have been largely replaced by other motor types such as AC (Alternating Current) motors and brushless DC motors in modern vehicles. However, there are still some advantages and disadvantages associated with using DC motors in automotive applications. Here’s a detailed explanation of the advantages and disadvantages:

Advantages of Using DC Motors in Automotive Applications:

1. Cost: DC motors tend to be less expensive compared to other motor types, such as AC motors or brushless DC motors. This cost advantage can make them an attractive option for certain automotive applications, especially in budget-conscious scenarios.

2. Simple Control: DC motors have a relatively simple control system. By adjusting the voltage applied to the motor, the speed and torque can be easily controlled. This simplicity of control can be advantageous in automotive applications where basic speed control is sufficient.

3. High Torque at Low Speeds: DC motors can provide high torque even at low speeds, making them suitable for applications that require high starting torque or precise low-speed control. This characteristic can be beneficial for automotive applications such as power windows, windshield wipers, or seat adjustments.

4. Compact Size: DC motors can be designed in compact sizes, making them suitable for automotive applications where space is limited. Their small form factor allows for easier integration into tight spaces within the vehicle.

Disadvantages of Using DC Motors in Automotive Applications:

1. Limited Efficiency: DC motors are typically less efficient compared to other motor types, such as AC motors or brushless DC motors. They can experience energy losses due to brush friction and electrical resistance, resulting in lower overall efficiency. Lower efficiency can lead to increased power consumption and reduced fuel economy in automotive applications.

2. Maintenance Requirements: DC motors that utilize brushes for commutation require regular maintenance. The brushes can wear out over time and may need to be replaced periodically, adding to the maintenance and operating costs. In contrast, brushless DC motors or AC motors do not have this maintenance requirement.

3. Limited Speed Range: DC motors have a limited speed range compared to other motor types. They may not be suitable for applications that require high-speed operation or a broad range of speed control. In automotive applications where high-speed performance is crucial, other motor types may be preferred.

4. Electromagnetic Interference (EMI): DC motors can generate electromagnetic interference, which can interfere with the operation of other electronic components in the vehicle. This interference may require additional measures, such as shielding or filtering, to mitigate its effects and ensure proper functioning of other vehicle systems.

5. Brush Wear and Noise: DC motors that use brushes can produce noise during operation, and the brushes themselves can wear out over time. This brush wear can result in increased noise levels and potentially impact the overall lifespan and performance of the motor.

While DC motors offer certain advantages in terms of cost, simplicity of control, and high torque at low speeds, they also come with disadvantages such as limited efficiency, maintenance requirements, and electromagnetic interference. These factors have led to the adoption of other motor types, such as brushless DC motors and AC motors, in many modern automotive applications. However, DC motors may still find use in specific automotive systems where their characteristics align with the requirements of the application.

China manufacturer CHINAMFG Slg51703 Automatic Sliding Door Motor AC DC for 800kg Sliding Gate   vacuum pump for ac	China manufacturer CHINAMFG Slg51703 Automatic Sliding Door Motor AC DC for 800kg Sliding Gate   vacuum pump for ac
editor by CX 2024-04-17

China Custom High Torque 12V 24V Micro DC Wiper Worm Gear Motor 12 24 Volt Automatic Electric Garage Sliding Gate Door Opener Brush DC Motor vacuum pump distributors

Product Description

 

High Torque 12V 24V Micro Dc Wiper Worm Gear Motor 12 24 Volt Automatic Electric Garage Sliding Gate Door Opener Brush Dc Motor

1)Product Description:
    
1°size:Diameter 59mm 
    2°lifespan:5000 hours 
    3°gear material: plastic or brass
    4°IP rate:IP54

 

 

 

2)Complete Specification:

3)Motor Drawing:

Shaft drawing:

 

   

4)Application:

 

 welding machine, electrical household, CHINAMFG machinery, office intelligent equipment, hotel leisure, antomated machine and so on.

Motor Voltage: DC12V, 24V,42V,48V,90V,110V ,300V

Motor Rated Power:15W, 25W,30W,45W,65W, 95W,120W,150W,180W

Motor no-load Speed:15RPM, 30RPM,60RPM,80RM,120RPM,150RPM,180RPM,200RPM,220RPM.

5)Factory show:

Transfer way:

 

7)RFQ:

Q: Are you trading company or manufacturer ?

A: We are Integration of industry and trade, with over 20 years experience in DC worm gear motor. Our company have accumulated skilled production line, complete management and powerful research support, which could match all of the customers’ requirements and make them satisfaction.
 

Q: What is your main product?

DC Motor: Gear motor, Square motor, Stepped motor, and Micro motor
-Welding equipment: Wire feeder, Welding rod, Welding Torch, Earth clamp, Electrode holder, and Rectifier
 

Q: What if I don’t know which DC motor I need?

A: Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.
 

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.
If you have another question, pls feel free to contact us as below:
 

Q: How to delivery:

A: By sea – Buyer appoint forwarder, or our sales team find suitable forwarder for buyers. 

By air – Buyer offer collect express account, or our sales team find suitable express for buyers. (Mostly for sample)
Others – Actually,samples send by DHL,UPS, TNT and Fedex etc. We arrange to delivery goods to some place from China appointed by buyers.

Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

How is the efficiency of a gear motor measured, and what factors can affect it?

The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:

Measuring Efficiency:

The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:

Efficiency = (Pout / Pin) * 100%

The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:

Pout = T * ω

The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:

Pin = V * I

By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.

Factors Affecting Efficiency:

Several factors can influence the efficiency of a gear motor. Here are some notable factors:

  • Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
  • Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
  • Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
  • Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
  • Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
  • Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.

By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.

gear motor

What is the significance of gear reduction in gear motors, and how does it affect efficiency?

Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

Significance of Gear Reduction:

1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

Effect on Efficiency:

While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China Custom High Torque 12V 24V Micro DC Wiper Worm Gear Motor 12 24 Volt Automatic Electric Garage Sliding Gate Door Opener Brush DC Motor   vacuum pump distributorsChina Custom High Torque 12V 24V Micro DC Wiper Worm Gear Motor 12 24 Volt Automatic Electric Garage Sliding Gate Door Opener Brush DC Motor   vacuum pump distributors
editor by CX 2024-03-29

China Best Sales Remote Control Automatic Electric Sliding Door Gear DC Motor vacuum pump connector

Product Description

>>  Sliding Gate Motor      
 

Main features

1) Magnetic limit swith

2) Aluminum gear box

3) Thermal protection at 125ºC built in motor winding

4) In case of power failure, the gate can be opened and closed manually after release clutch

5) Protection class:IP55
 

                              
 

Model Items Specifications
MO.SLS400D Max lifting weight: 400 KG
Supply Voltage: DC 24V 50HZ
Motor Power: 60W
Motor rotational speed: 2200 r/min
Available for Solar Charge
Magnetic limit switch ONLY
MO.SLS500D Max lifting weight: 500 KG
Supply Voltage: DC 24V 50HZ
Motor Power: 60W
Motor rotational speed: 2200 r/min
Aluminum gear box  
Mechnical limit switch ONLY  
MO.SLS2250 Max lifting weight: 800 KG
Supply Voltage: AC 220V 50HZ/60HZ
Motor Power: 250W
Motor rotational speed: 1400 r/min
Built-in Receiver
Megnetic limit switch ONLY
MO.SLS9370 Max lifting weight: 1000 KG
Supply Voltage: AC 220V 50HZ/60HZ
Motor Power: 370W
Motor rotational speed: 1400 r/min
Aluminum gear box  
Magnetic or Mechnical limit switch  
MO.SLS9450 Max lifting weight: 1500 KG
Supply Voltage: AC 220V 50HZ/60HZ
Motor Power: 450W
Motor rotational speed: 1400 r/min
Aluminum gear box
Magnetic or Mechnical limit switch

>> Packing & Delivery

1.Small quantity: Carton +Wooden pallet or Carton +Wooden box 
2.The full container quantity (20’GP/40’GP/40’HQ): Carton.
 

 

>> About Master Well

>> Our Workshop

Relying on our excellent business performance and R&D, we have exported to more than 120 countries and regions. We are now growing up to about 100 people work team, including International Sales Department, Domestic Sales Department, Purchase Department, Financial Department, Xihu (West Lake) Dis.n Resource Department and Research and Development. We are always ready to provide the professinal service for you. 

>> Our Certification

>>FAQ

Q1: What is your MOQ?
A:  No min order for Sliding Gate Opener. We also suggest wooden cases package for protection during shipment.

Q2: What is the Max available lifting weight of the motor?
A: The max  lifting weight of the motor is 1500KG.

Q3: : Can I get a sample of Sliding Gate Opener for quality check?
A: Sample is available. 

Q4: How can I get a price of needed Sliding Gate Opener?
A: Please give the exactly size, weight and quantity of your required door. We can give you a detail quotation based on your requirements.

Q5: What kind of payment terms would you accept?
A: We usually accept T/T, L/C, Western Union, etc. If you prefer other payments terms, please feel free to discuss with us.

Q6: We want to be your agent of our area. How to apply for this?
A: Please send your idea and your profile to any e-mails of us. Let’s cooperate.

Q7: How to install your product, is it difficult?
A: Easy to install. And you can contact our salesman if you have any question. Of course we can offer on-site installation guide services if you need.

Q8: Do you produce other products? Do you also produce accessories?
A: Yes, we also produce Garage door, Glass aluminum sectional door, High speed door, Rolling shutter door, Dock leveller, Dock seal, Motor&Gate openers. We produce parts by ourselves in order to control quality and cost.

 

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Structure: Underground
Driving Type: Electromechanical
Electric Current Type: AC
Brand: Masterwell
Optional Torque: 400-1500kg
Protection Class: IP55
Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Best Sales Remote Control Automatic Electric Sliding Door Gear DC Motor   vacuum pump connector	China Best Sales Remote Control Automatic Electric Sliding Door Gear DC Motor   vacuum pump connector
editor by CX 2024-02-10

China manufacturer Remote Control Automatic Electric Sliding Door Gear AC Motor with Good quality

Merchandise Description

>>  Sliding Gate Motor     
 

                              
 

>> Packing & Delivery

one.Tiny amount: Carton +Wooden pallet or Carton +Picket box 
two.The complete container amount (20’GP/40’GP/40’HQ): Carton.
 

 

>> About Learn Properly

>> Our Workshop

Relying on our excellent business efficiency and R&D, we have exported to far more than one hundred twenty international locations and areas. We are now expanding up to about one hundred individuals work team, like International Product sales Office, Domestic Product sales Department, Buy Section, Economic Section, Xihu (West Lake) Dis.n Useful resource Office and Study and Growth. We are constantly completely ready to give the professinal service for you. 

>> Our Certification

>>FAQ

Q1: What is your MOQ?
A:  No min buy for Sliding Gate Opener. We also recommend wood instances deal for defense throughout shipment.

Q2: What is the Max offered lifting weight of the motor?
A: The max  lifting weight of the motor is 1500KG.

Q3: : Can I get a sample of Sliding Gate Opener for quality check?
A: Sample is offered. 

This fall: How can I get a price of needed Sliding Gate Opener?
A: Remember to give the just size, excess weight and quantity of your needed doorway. We can give you a element quotation based on your needs.

Q5: What sort of payment terms would you take?
A: We typically take T/T, L/C, Western Union, etc. If you prefer other payments phrases, make sure you really feel cost-free to examine with us.

Q6: We want to be your agent of our spot. How to implement for this?
A: Please deliver your notion and your profile to any e-mails of us. Let us cooperate.

Q7: How to put in your merchandise, is it tough?
A: Easy to put in. And you can get in touch with our salesman if you have any concern. Of system we can provide on-internet site installation CZPT companies if you need.

Q8: Do you generate other items? Do you also generate equipment?
A: Sure, we also produce Garage door, Glass aluminum sectional door, Substantial speed doorway, Rolling shutter door, Dock leveller, Dock seal, Motor&Gate openers. We produce components by ourselves in get to handle top quality and expense.

 

 

 

 

Positive aspects of a Planetary Motor

A planetary motor has many advantages. Its compact style and reduced sounds can make it a good option for any software. Among its a lot of uses, planetary gear motors are found in intelligent cars, consumer electronics, smart robots, conversation products, and medical technologies. They can even be identified in intelligent residences! Read on to uncover the rewards of a planetary equipment motor. You are going to be astonished at how flexible and useful it is!
Motor

Self-centering planet gears ensure a symmetrical power distribution

A planetary motor is a equipment with several, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission dimension has no bearing on the output torque. A torsional pressure analysis of the retaining framework for this kind of motor located a optimum shear tension of sixty four MPa, which is equal to a security element of 3.1 for 6061 aluminum. Self-centering world gears are created to make certain a symmetrical force distribution throughout the transmission method, with the weakest ingredient becoming the pinions.
A planetary gearbox is made up of ring and sun gears. The pitch diameters of ring and planet gears are almost equivalent. The variety of tooth on these gears establishes the common equipment-ratio for each output revolution. This error is related to the production precision of the gears. The result of this error is a sound or vibration characteristic of the planetary gearbox.
An additional design for a planetary gearbox is a traction-dependent variant. This style eradicates the require for timing marks and other restrictive assembly circumstances. The design of the ring gear is similar to that of a pencil sharpener system. The ring gear is stationary whilst earth gears lengthen into cylindrical cutters. When put on the sun’s axis, the pencil sharpening system revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need to have for standard planetary carriers and is mated with the self-centering world gears by twin-function components. The dual-perform parts synchronize the rolling movement and traction of the gears. They also get rid of the need to have for a provider and lessen the force distribution in between the rotor and stator.

Metal gears

A planetary motor is a type of electrical drive that employs a series of steel gears. These gears share a load attached to the output shaft to make torque. The planetary motor is typically CNC managed, with additional-extended shafts, which let it to suit into very compact designs. These gears are accessible in sizes from seven millimeters to twelve millimeters. They can also be equipped with encoders.
Planetary gearing is commonly utilised in different industrial purposes, such as auto transmissions, off-highway transmissions, and wheel travel motors. They are also used in bicycles to electrical power the change system. Another use for planetary gearing is as a powertrain among an internal combustion engine and an electric motor. They are also utilized in forestry programs, this kind of as debarking tools and sawing. They can be used in other industries as properly, this sort of as pulp washers and asphalt mixers.
Planetary equipment sets are composed of three types of gears: a sun gear, earth gears, and an outer ring. The sunshine equipment transfers torque to the planet gears, and the world gears mesh with the outer ring gear. Planet carriers are made to deliver high-torque output at reduced speeds. These gears are mounted on carriers that are moved all around the ring gear. The world gears mesh with the ring gears, and the sunlight gear is mounted on a moveable carrier.
Plastic planetary equipment motors are significantly less pricey to generate than their metal counterparts. However, plastic gears experience from reduced energy, rigidity, and load potential. Metal gears are usually less complicated to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and considerably less noisy. Some of the greatest plastic planetary gear motors are produced in collaboration with leading suppliers. When purchasing a plastic planetary gear motor, be sure to consider what components it is created of.
Motor

Encoder

The Mega Torque Planetary Encoder DC Geared Motor is created with a Japanese Mabuchi motor RS-775WC, a two hundred RPM base motor. It is able of achieving stall torque at low speeds, which is unattainable to obtain with a basic DC motor. The planetary encoder offers 5 pulses for every revolution, making it excellent for applications demanding specific torque or placement. This motor needs an 8mm hex coupling for appropriate use.
This encoder has a high resolution and is suited for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back indicators. It can count paulses as the motor passes by way of a corridor on the circuit board. Depending on the gearbox ratio, the encoder can offer up to two million transitions for each rotation.
The planetary gear motor makes use of a planetary equipment technique to distribute torque in synchrony. This minimizes the threat of equipment failure and raises the all round output capacity of the unit. On the other hand, a spur gear motor is a simpler design and less costly to produce. The spur gear motor functions far better for lower torque applications as every gear bears all the load. As this sort of, the torque ability of the spur equipment motor is decrease than that of a planetary equipment motor.
The REV UltraPlanetary gearbox is made for FTC and has 3 different output shaft choices. The output shaft is produced of 3/8-inch hex, allowing for flexible shaft substitute. These motors are a excellent value as they can be utilized to satisfy a broad range of electricity demands. The REV UltraPlanetary gearbox and motor are available for very realistic prices and a feminine 5mm hex output shaft can be utilized.

Durability

A single of the most frequent questions when deciding on a planetary motor is “How durable is it?” This is a query which is typically requested by folks. The good news is that planetary motors are extremely resilient and can previous for a extended time if effectively preserved. For a lot more info, study on! This write-up will include the durability and effectiveness of planetary gearmotors and how you can select the best a single for your needs.
1st and foremost, planetary equipment sets are made from steel materials. This increases their lifespan. The planetary equipment set is normally made of metals such as nickel-steel and steel. Some planetary equipment motors use plastic. Metal-reduce gears are the most durable and ideal for purposes that require a lot more torque. Nickel-metal gears are significantly less durable, but are greater in a position to hold lubricant.
Durability of planetary motor gearbox is crucial for applications requiring large torque compared to speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are costly, but they are very customizable. The planetary gearbox can be eliminated for maintenance and substitute if essential. Elements for the gearbox can be acquired separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for comprehending its longevity. In prior research, uncoupled and coupled meshing designs have been utilised to examine the influence of numerous design and style parameters on the vibration attributes of the planetary gear system. This investigation calls for thinking about the position of the mesh stiffness, construction stiffness, and minute of inertia. In addition, dynamic versions for planetary gear transmission require modeling the impact of multiple parameters, this kind of as mesh stiffness and shaft spot.
Motor

Expense

The planetary gear motor has numerous speak to details that assist the rotor rotate at different speeds and torques. This design is often employed in stirrers and huge vats of liquid. This sort of motor has a low original cost and is much more typically identified in lower-torque purposes. A planetary gear motor has several make contact with points and is a lot more powerful for applications necessitating higher torque. Gear motors are often located in stirring mechanisms and conveyor belts.
A planetary gearmotor is normally made from 4 mechanically joined rotors. They can be used for various purposes, including automotive and laboratory automation. The plastic enter phase gears minimize noise at higher speeds. Metal gears can be employed for substantial torques and a modified lubricant is typically included to minimize bodyweight and mass instant of inertia. Its low-price design and style tends to make it an outstanding choice for robots and other applications.
There are several various varieties of planetary equipment motors obtainable. A planetary gear motor has 3 gears, the sun gear and earth gears, with each and every sharing equal amounts of perform. They are excellent for purposes requiring high torque and lower-resistance operation, but they need much more components than their one-stage counterparts. The metal minimize gears are the most tough, and are frequently utilized in applications that need high speeds. The nickel-metal gears are much more absorptive, which tends to make them far better for holding lubricant.
A planetary gear motor is a large-performance electrical vehicle motor. A standard planetary equipment motor has a 3000 rpm velocity, a peak torque of .32 Nm, and is offered in 24V, 36V, and 48V electrical power supply. It is also silent and effective, necessitating little maintenance and offering better torque to a present day electrical automobile. If you are contemplating of acquiring a planetary gear motor, be sure to do a bit of analysis prior to purchasing one.

China manufacturer Remote Control Automatic Electric Sliding Door Gear AC Motor     with Good qualityChina manufacturer Remote Control Automatic Electric Sliding Door Gear AC Motor     with Good quality