Tag Archives: industrial gear

China OEM ZD Industrial Brushed Electric DC Gear Motor for Digital UV Printer vacuum pump brakes

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

 

Detailed Photos

Product Parameters

Product Description:

Gear Motor-Torque Table Allowance Torque Unit:Upside (N.m)/Belowside (kgf.cm)

•Gearhead and Intermediate gearhead are sold separately.
•Enter the reduction ratio into the blank() within the model name.
•The speed is calculated by dividing the motor’s synchronous speed by the reduction ratio. The actual speed is 2%~20% less than the displayed value, depending on the size of the load.
•To reduce the speed beyond the reduction ratio in the following table, attach an intermediate gearhead (reduction ratio: 10) between the reducer and motor. In that case, the permissible torque is 20N.m.

 

Type

Motor/Gearhead

Gear Ratio

3

3.6

5

6

7.5

9

12.5

15

18

25

30

36

50

60

75

90

100

120

150

180

Speed

r/min

866

722

520

433

346

288

208

173

144

104

86

72

52

43

34

28

26

21

17

14

Z5D150-24GU(5GU90RT)

5GU()RC/

5GU()RT

0.87

1.04

1.45

1.74

2.41

5.44

4.02

4.82

5.78

8.03

9.64

10.4

14.5

17.4

20.0

20.0

20.0

20.0

20.0

20.0

8.87

10.6

14.8

17.7

24.6

55.5

41.0

48.2

59.0

81.9

98.3

106

148

177

200

200

200

200

200

200

Dimensions(Unit:mm):

Other Related Products

Click here to find what you are looking for:

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Power Tools
Operating Speed: Constant Speed
Structure and Working Principle: Brush
Certification: ISO9001, CCC
Transport Package: Cnt
Specification: UL, CE, ISO9001, CCC, RoHS
Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China OEM ZD Industrial Brushed Electric DC Gear Motor for Digital UV Printer   vacuum pump brakesChina OEM ZD Industrial Brushed Electric DC Gear Motor for Digital UV Printer   vacuum pump brakes
editor by CX 2024-05-03

China wholesaler DC 12V Trolling Motor Small Planet Worm Gear DC Motor 12V 30W Industrial Manufacturer vacuum pump oil near me

Product Description

dc 12v trolling motor small planet worm gear dc motor 12v 30w industrial manfactorer 

Application of 12 V DC Motor

12 V DC motors are used in a wide variety of applications, including:

  • Fans: 12 V DC motors are used in fans to provide ventilation.
  • Pumps: 12 V DC motors are used in pumps to circulate fluids.
  • Winches: 12 V DC motors are used in winches to pull loads.
  • Door openers: 12 V DC motors are used in door openers to open and close doors.
  • Toys: 12 V DC motors are used in toys to provide movement.
  • Robotics: 12 V DC motors are used in robotics to provide movement.
  • Electric vehicles: 12 V DC motors are used in electric vehicles to provide propulsion.

12 V DC motors are a versatile type of motor that can be used in a wide variety of applications. They are relatively inexpensive and easy to find, making them a popular choice for many projects.

Here are some of the advantages of using 12 V DC motors:

  • Inexpensive: 12 V DC motors are relatively inexpensive, making them a cost-effective option for many projects.
  • Easy to find: 12 V DC motors are widely available, making them easy to find and purchase.
  • Versatile: 12 V DC motors can be used in a wide variety of applications, making them a versatile choice for many projects.
  • Reliable: 12 V DC motors are typically reliable and durable, making them a good choice for long-term use.

Here are some of the disadvantages of using 12 V DC motors:

  • Low power: 12 V DC motors typically have lower power than other types of motors, making them less suitable for applications that require high power.
  • Low speed: 12 V DC motors typically have lower speeds than other types of motors, making them less suitable for applications that require high speed.
  • Noise: 12 V DC motors can be noisy, making them less suitable for applications where noise is a concern.

Overall, 12 V DC motors are a versatile and reliable type of motor that can be used in a wide variety of applications. They are relatively inexpensive and easy to find, making them a popular choice for many projects.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 12
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

dc motor

How does the speed control of a DC motor work, and what methods are commonly employed?

The speed control of a DC (Direct Current) motor is essential for achieving precise control over its rotational speed. Various methods can be employed to regulate the speed of a DC motor, depending on the specific application requirements. Here’s a detailed explanation of how speed control of a DC motor works and the commonly employed methods:

1. Voltage Control:

One of the simplest methods to control the speed of a DC motor is by varying the applied voltage. By adjusting the voltage supplied to the motor, the electromotive force (EMF) induced in the armature windings can be controlled. According to the principle of electromagnetic induction, the speed of the motor is inversely proportional to the applied voltage. Therefore, reducing the voltage decreases the speed, while increasing the voltage increases the speed. This method is commonly used in applications where a simple and inexpensive speed control mechanism is required.

2. Armature Resistance Control:

Another method to control the speed of a DC motor is by varying the armature resistance. By inserting an external resistance in series with the armature windings, the total resistance in the circuit increases. This increase in resistance reduces the armature current, thereby reducing the motor’s speed. Conversely, reducing the resistance increases the armature current and the motor’s speed. However, this method results in significant power loss and reduced motor efficiency due to the dissipation of excess energy as heat in the external resistance.

3. Field Flux Control:

Speed control can also be achieved by controlling the magnetic field strength of the motor’s stator. By altering the field flux, the interaction between the armature current and the magnetic field changes, affecting the motor’s speed. This method can be accomplished by adjusting the field current through the field windings using a field rheostat or by employing a separate power supply for the field windings. By increasing or decreasing the field flux, the speed of the motor can be adjusted accordingly. This method offers good speed regulation and efficiency but requires additional control circuitry.

4. Pulse Width Modulation (PWM):

Pulse Width Modulation is a widely used technique for speed control in DC motors. It involves rapidly switching the applied voltage on and off at a high frequency. The duty cycle, which represents the percentage of time the voltage is on, is varied to control the effective voltage applied to the motor. By adjusting the duty cycle, the average voltage across the motor is modified, thereby controlling its speed. PWM provides precise speed control, high efficiency, and low power dissipation. It is commonly employed in applications such as robotics, industrial automation, and electric vehicles.

5. Closed-Loop Control:

In closed-loop control systems, feedback from the motor’s speed or other relevant parameters is used to regulate the speed. Sensors such as encoders or tachometers measure the motor’s actual speed, which is compared to the desired speed. The difference, known as the error signal, is fed into a control algorithm that adjusts the motor’s input voltage or other control parameters to minimize the error and maintain the desired speed. Closed-loop control provides excellent speed regulation and accuracy, making it suitable for applications that require precise speed control, such as robotics and CNC machines.

These methods of speed control provide flexibility and adaptability to various applications, allowing DC motors to be effectively utilized in a wide range of industries and systems.

dc motor

How do DC motors compare to AC motors in terms of performance and efficiency?

When comparing DC (Direct Current) motors and AC (Alternating Current) motors, several factors come into play, including performance and efficiency. Here’s a detailed explanation of how DC motors and AC motors compare in terms of performance and efficiency:

1. Performance:

Speed Control: DC motors typically offer better speed control compared to AC motors. DC motors can be easily controlled by varying the voltage applied to the armature, allowing for precise and smooth speed regulation. On the other hand, AC motors rely on complex control methods such as variable frequency drives (VFDs) to achieve speed control, which can be more challenging and costly.

Starting Torque: DC motors generally provide higher starting torque compared to AC motors. The presence of a separate field winding in DC motors allows for independent control of the field current, enabling higher torque during motor startup. AC motors, especially induction motors, typically have lower starting torque, requiring additional starting mechanisms or devices.

Reversibility: DC motors offer inherent reversibility, meaning they can easily change their rotational direction by reversing the polarity of the applied voltage. AC motors, particularly induction motors, require more complex control mechanisms to achieve reversible operation.

Dynamic Response: DC motors have faster dynamic response characteristics compared to AC motors. They can quickly accelerate or decelerate, making them suitable for applications that require rapid changes in speed or precise control, such as robotics or servo systems.

2. Efficiency:

Full Load Efficiency: AC motors, especially three-phase induction motors, generally exhibit higher full load efficiencies compared to DC motors. This efficiency advantage is primarily due to the absence of commutation and the use of a rotating magnetic field in AC motors, which results in reduced energy losses and improved efficiency.

Partial Load Efficiency: DC motors can have higher efficiency at partial loads compared to AC motors. DC motors can be controlled by adjusting the armature voltage, allowing them to operate at reduced power while maintaining relatively high efficiency. AC motors, especially induction motors, may experience reduced efficiency at partial loads due to factors such as increased iron losses and reduced power factor.

Regenerative Braking: DC motors offer the advantage of regenerative braking, where the motor acts as a generator and converts kinetic energy into electrical energy during deceleration or braking. This regenerative braking capability allows for energy recovery, increasing overall system efficiency. AC motors typically require additional components or systems to achieve regenerative braking.

Power Factor: AC motors, when properly designed and operated, can have a power factor close to unity. This means that they draw relatively low reactive power from the electrical grid, resulting in improved power system efficiency. DC motors, on the other hand, may exhibit a lower power factor and require power factor correction measures if necessary.

In summary, DC motors and AC motors have their respective strengths and weaknesses in terms of performance and efficiency. DC motors excel in speed control, starting torque, reversibility, and dynamic response. AC motors, particularly three-phase induction motors, generally offer higher full load efficiency and power factor. However, DC motors can achieve higher efficiency at partial loads and have the advantage of regenerative braking. The choice between DC motors and AC motors depends on the specific application requirements, cost considerations, and the desired balance between performance and efficiency.

dc motor

Are there innovations or emerging technologies in the field of DC motor design?

Yes, there have been several innovations and emerging technologies in the field of DC (Direct Current) motor design. These advancements aim to improve the performance, efficiency, reliability, and overall capabilities of DC motors. Here’s a detailed explanation of some notable innovations and emerging technologies in DC motor design:

1. Brushless DC Motors:

One significant advancement in DC motor design is the development and widespread adoption of brushless DC motors (BLDC motors). Unlike traditional DC motors that use brushes for commutation, BLDC motors employ electronic commutation through the use of permanent magnets and motor controller circuits. This eliminates the need for brushes, reducing maintenance requirements and improving overall motor efficiency and lifespan. BLDC motors offer higher torque density, smoother operation, better speed control, and improved energy efficiency compared to conventional brushed DC motors.

2. High-Efficiency Materials:

The use of high-efficiency materials in DC motor design has been an area of focus for improving motor performance. Advanced magnetic materials, such as neodymium magnets, have allowed for stronger and more compact motor designs. These materials increase the motor’s power density, enabling higher torque output and improved efficiency. Additionally, advancements in materials used for motor windings and core laminations have reduced electrical losses and improved overall motor efficiency.

3. Power Electronics and Motor Controllers:

Advancements in power electronics and motor control technologies have greatly influenced DC motor design. The development of sophisticated motor controllers and efficient power electronic devices enables precise control of motor speed, torque, and direction. These technologies have resulted in more efficient and reliable motor operation, reduced energy consumption, and enhanced motor performance in various applications.

4. Integrated Motor Systems:

Integrated motor systems combine the motor, motor controller, and associated electronics into a single unit. These integrated systems offer compact designs, simplified installation, and improved overall performance. By integrating the motor and controller, issues related to compatibility and communication between separate components are minimized. Integrated motor systems are commonly used in applications such as robotics, electric vehicles, and industrial automation.

5. IoT and Connectivity:

The integration of DC motors with Internet of Things (IoT) technologies and connectivity has opened up new possibilities for monitoring, control, and optimization of motor performance. By incorporating sensors, actuators, and connectivity features, DC motors can be remotely monitored, diagnosed, and controlled. This enables predictive maintenance, energy optimization, and real-time performance adjustments, leading to improved efficiency and reliability in various applications.

6. Advanced Motor Control Algorithms:

Advanced motor control algorithms, such as sensorless control and field-oriented control (FOC), have contributed to improved performance and efficiency of DC motors. Sensorless control techniques eliminate the need for additional sensors by leveraging motor current and voltage measurements to estimate rotor position. FOC algorithms optimize motor control by aligning the magnetic field with the rotor position, resulting in improved torque and efficiency, especially at low speeds.

These innovations and emerging technologies in DC motor design have revolutionized the capabilities and performance of DC motors. Brushless DC motors, high-efficiency materials, advanced motor control techniques, integrated motor systems, IoT connectivity, and advanced control algorithms have collectively contributed to more efficient, reliable, and versatile DC motor solutions across various industries and applications.

China wholesaler DC 12V Trolling Motor Small Planet Worm Gear DC Motor 12V 30W Industrial Manufacturer   vacuum pump oil near me		China wholesaler DC 12V Trolling Motor Small Planet Worm Gear DC Motor 12V 30W Industrial Manufacturer   vacuum pump oil near me
editor by CX 2024-04-26

China manufacturer ZD Universal Industrial Power Tools 1410rpm Output Speed Helical Hypoid Gear Reducer Motor with Best Sales

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Detailed Photos

Product Parameters

Product Number Code

ZDF3 Size Chart—100W Motor

Outline Drawing

Note : It’s just the typical technical data for you reference, The specification such as voltage, speed, torque, shaft can be customized by your needs. Please contact us for more details. Thanks. 

 

Company Profile

FAQ

 

Q: What’re your main products?

A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you ! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving, Control
Casing Protection: Closed Type
Number of Poles: 4
Customization:
Available

|

gear motor

Where can individuals find reliable resources for learning more about gear motors and their applications?

Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

1. Manufacturer Websites:

Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

2. Industry Associations and Organizations:

Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

3. Technical Publications and Journals:

Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

4. Online Forums and Communities:

Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

5. Educational Institutions and Courses:

Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

6. Trade Shows and Exhibitions:

Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China manufacturer ZD Universal Industrial Power Tools 1410rpm Output Speed Helical Hypoid Gear Reducer Motor   with Best Sales China manufacturer ZD Universal Industrial Power Tools 1410rpm Output Speed Helical Hypoid Gear Reducer Motor   with Best Sales
editor by CX 2024-04-12

China best 750W 0.75kw Three-Phase Gear Reduction Motor for Industrial Mixer manufacturer

Product Description

Product Overview

NCH horizontal attached single-phase three-phase,aluminum shell (brake) gear reducer motor

When you need a reliable and efficient deceleration motor, MANVAC’s products are your best choice!

Our deceleration motors utilize advanced technologies, ensuring the highest standards of performance and quality. CHINAMFG motors feature high torque, low noise, and long lifespan benefits, making them suitable for various applications.

Whether you need precision control in industrial production or more efficient energy consumption in home appliances, MANVAC’s deceleration motors can easily handle the job. Our products are designed with eco-friendly materials and concepts to help you achieve your energy-saving and environmental goals.

 

CHINAMFG deceleration motors have received high praise and trust from our customers, enabling you to choose our products with peace of mind. Whatever type of deceleration motor you need, CHINAMFG can provide the optimal solution to make your production and life more convenient and efficient

 

FEATURES AT A GLANCE

High precision

 

Small size

 

Large torque

 

Low temperature

 

                        Regular payment                                                              With brake                                                               tailored colour

 

PRODUCT SPECIFICATIONS

CAPACITY

220V

380V

415V

440V

RPM

100W

0.87

0.5

0.32

0.30

1410

200W

1.39

0.8

0.70

0.58

1410

400W

2.4

1.4

1.13

1.07

1420

750W

3.8

2.2

1.94

1.84

1420

1500W

6.9

4.0

3.94

3.30

1430

2200W

9.5

5.5

4.74

4.47

1430

3700W

15.9

9.2

6.93

6.93

1440

5500W

23.5

13.5

1440

 

 

PRODUCT CONFIGURATION

Our factory

 

SIMILAR PRODUCTS

 

 

FAQ

1. What is the warranty of your machine?
R: 1 years, any product itself question,you can contact with us.
2. What is the material of your machine , is oil free?
R: our machine is aluminum alloy, motor is 100% copper coil , of course, we are oil free.
3. How to operate your machine?
R: Connect with wire, and turn on the power, so you can use it directly, about the wiring method, we will tell you how to do
according to your voltage, so at first , you need to tell us your voltage and phase,its important.
4. You are trading company or manufacture?
R: We are manufacture, we can provide long-term supply with fast speed.
5. How to contact with you?
R: You can send messages to me directly by alibaba trade manager, or add me like below

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Gear Reduction Motor
Casing Protection: Protection Type
Number of Poles: 6
Samples:
US$ 95/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China best 750W 0.75kw Three-Phase Gear Reduction Motor for Industrial Mixer   manufacturer China best 750W 0.75kw Three-Phase Gear Reduction Motor for Industrial Mixer   manufacturer
editor by CX 2024-04-03

China Custom Custom Industrial 0.6kw 600W 6nm 1000 Rpm DC Gear Planetary Motor 24volt 36volt 48volt 310volt BLDC Motor with Planetary Gearbox vacuum pump engine

Product Description

Product Description

Feature: 

A. High power range from 75W to 15KW
B. Dia: 57mm-180mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
K.High-performance and stable matching driver and controller

Δ Kindly remind: As different customers may need different motor parameter for fitting your equipment. If below motor can’t fit your need, please kindly send inquiry to us with information for rated power or torque,rated speed, and rated voltage for our new size drawing making for you. CLICK HERE to contact me. Thanks a lot!

Dimensions (Unit: mm )
Mounting screws are included with gear head.

Gearbox Specification:

Gearbox Type

PLF90/PLE90

ZPLF90/ZPLE90

Deceleration stage

1

2

3

1

2

3

Length

153

176.5

199.5

187.5

222

245.5

Reduction ratio

Level 1: 3, 4, 5, 7, 10
Level 2: 16, 20, 25, 28, 35, 40, 70
Level 3: 64, 80, 100, 125, 140, 175, 200, 250

110mm 600W BLDC motor with PLF120/PLE120 Planetary Gearbox  

Other Motor Specification Form: 
Δ Motor interface, Voltage, Speed can be customized.

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Motor Flange Size

Δ More Motor Flange Size to choose, if you need other size. Welcome to contact us to custom.

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 373.4/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

In which industries are gear motors commonly used, and what are their primary applications?

Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:

1. Robotics and Automation:

Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.

2. Automotive Industry:

The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.

3. Manufacturing and Machinery:

Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.

4. HVAC and Building Systems:

In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.

5. Marine and Offshore Industry:

Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.

6. Renewable Energy Systems:

The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.

7. Medical and Healthcare:

Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.

These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.

China Custom Custom Industrial 0.6kw 600W 6nm 1000 Rpm DC Gear Planetary Motor 24volt 36volt 48volt 310volt BLDC Motor with Planetary Gearbox   vacuum pump engine	China Custom Custom Industrial 0.6kw 600W 6nm 1000 Rpm DC Gear Planetary Motor 24volt 36volt 48volt 310volt BLDC Motor with Planetary Gearbox   vacuum pump engine
editor by CX 2024-03-03

China Hot selling Factory of 90mm Frame 90W,12V/24V DC Brush Gear Motor for Solar Industrial vacuum pump design

Product Description

Factory of 90mm Frame 90W,12V/24V DC Brush Gear Motor for Solar Industrial 

Product Description:

Gear Motor-Torque Table Allowance Torque Unit:Upside (N.m)/Belowside (kgf.cm)

•Gearhead and Intermediate gearhead are sold separately.
•Enter the reduction ratio into the blank() within the model name.
•The speed is calculated by dividing the motor’s synchronous speed by the reduction ratio. The actual speed is 2%~20% less than the displayed value, depending on the size of the load.
•To reduce the speed beyond the reduction ratio in the following table, attach an intermediate gearhead (reduction ratio: 10) between the reducer and motor. In that case, the permissible torque is 20N.m.

Type

Motor/Gearhead

Gear Ratio

3

3.6

5

6

7.5

9

12.5

15

18

25

30

36

50

60

75

90

100

120

150

180

Speed r/min

933

111

560

466

373

311

224

186

155

112

93

77

56

46

37

31

28

23

18

15

Z5D90-24GU-28S

5GU()RC/

5GU()RT

0.60

0.73

1.01

1.21

1.68

2.01

2.80

3.36

4.03

5.59

6.71

7.25

10.1

12.1

15.1

18.1

20.0

20.0

20.0

20.0

6.12

7.45

10.3

12.3

17.1

20.5

28.6

34.3

41.1

57.0

68.4

74.0

103

123

154

185

200

200

200

200

Dimensions(Unit:mm):

Company Information

FAQ
Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you () /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Power Tools
Operating Speed: Constant Speed
Structure and Working Principle: Brushless
Certification: ISO9001, CCC, CCC, CE, RoHS, UL
Transport Package: Cnt
Specification: UL, CE, ISO9001, CCC, RoHS
Customization:
Available

|

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Hot selling Factory of 90mm Frame 90W,12V/24V DC Brush Gear Motor for Solar Industrial   vacuum pump design		China Hot selling Factory of 90mm Frame 90W,12V/24V DC Brush Gear Motor for Solar Industrial   vacuum pump design
editor by CX 2024-02-17

China wholesaler 24V 36V 48V Industrial Usage Brush PMDC Mini Electric Gear Motor 12V DC Motor with Gearbox with Hot selling

Product Description

24V 36V 48V Industrial Usage Brush PMDC Mini Electric Gear Motor 12V DC Motor with Gearbox

NOTE:
1.Please inform the application of your brushed dc gear motors.
2.Please provide the load speed and load torque.
3.Please choose the mounting distance 50.80mm or 72mm.

Motor Applications

More Applications:

auto garage door motor,clothes drying hanger,kitchen hood motor,adjustable desk motor,ball washing machine motor,motorized tv lift cabinet furniture motor,waste disposal motor,vending machine,food processor blender motor, welding machine,office intelligent equipment,smart home lifting machine,floor polisher,truck lift,stair lift,hospital electric bed ,hydraulic pump electric forklift.

Motor type: mini motor,dc motor,gear motor,worm gear motor,womr motor,geared motor,dc geared motor,electric motor,electrical  motor,electric motors,China electric motor,dc motor with gearbox,dc motor with encoder,dc motor with brake,mini electric motor,brush motor,brushed motor,pmdc motor ,permanent magnet motor,motor 12V ,high torque motor.

Product Description

Main Characteristic:

Motor Type 12V DC Motor with Gearbox
Motor Size 49mm 59mm 63mm 76mm 88mm 110mm
Motor Power Max 500W
Motor Output Speed 15rpm, 36rpm, 130rpm, 150rpm, 180rpm, 210rpm (max 350rpm)
Motor Voltage DC12V 24V 36V 42V 48V 60V 72V 90V 110V
Motor Current 1.0A, 1.2A, 1.5A
Gear ratio 1: 56, 1:28 ,1:70
Gear Modulus 70:1 M=0.8   
56:1 56:2 M=1
Motor length 80mm
Motor Gearbox Left angle gearbox ,right angle gearbox
Material of gear Plastic / metal gear
Diameter of output shaft 6mm 8mm 10mm 12mm 14mm (customized)
Type of output shaft customized
Factory Address Xihu (West Lake) Dis.,HangZhou
Factory Experience Motor custom 20 years
Motor Advantage 1.Low noise < 60db
2.Long life span > 4000hr(continuously working)
3.Competitive factory price
4.Sample order are welcome

 

We can design and make following to your voltage, power, speed, torque, install dimension and shaft dimension etc.

The motor size from φ 59mm to φ 110mm, and the power from 30w to 180w, the out put speed can be changed by motor design or the gear box ratio, For the speed control, we designed the motor cover to install speed sensor.

Products Type  Voltage Power  No Load  Load  Load Load  Gear ratio   Motor length
V W Speed Current  Speed Current  Torque 
RPM A  RPM A N.M   mm
D59R-2430-15  24  30  15+-2    <=1.2  12+-2      1:56  80
D59R-2450-36  24  50  36+-2    <=1.2  130+-5      1:56  80
D59R-2430-130  24  30  130+-5   <=1.5  100+-5  <=6.5  >=4.0  1:28  80
D59R-2430-150  24  30  150+-5   <=1.0  130+-5  <=6.5  >=4.0  1:28  80
D59R-2430-180  24  30  180+-5  <=1.2  150+-5  <=6.5  >=4.0  1:28  80
D59R-2430-210  24  30  210+-5  <=1.5  180+-5  <=6.5  >=4.2  1:28  80

Company Profile

 

HangZhou CHINAMFG Science & Technology Co.,Ltd is a professional company specialized in design and customization of small dc worm gear motor. The motor models mainly include D49 D59 D63 D76 D88 series, and all the motors can be installed with hall sensor, encoder, opto sensor and brake,so we accept OEM and ODM orders ,and manufacture the motor according to your required like voltage, power, speed, torque, dimension and motor direction.

Our boss is a doctor of dc gear motor with over 20 years experience in motor customization and production,we also has professional R & D team and testing centers to test gears and motors, and could guaranteed high quality products for customers,welcome to contact our customer service center.

Our main market:
Europe,America and Asia,including United Kingdom,  Germany, Italy, France, Sweden, United State,India,Korea and so on.

Our Advantages

 

Company Advantages:

1.Professional motor OEM & ODM manufacturer
 

2.20 years motor design experience

3.Experienced engineering designers

4.Fast delivery time,about 15-20 days if use our conventional output shaft

5.We have strict quality control system,each batch of goods will be tested for torque and noise before leaving the factory

Exhibition

 

Certifications

 

FAQ

Q: Are you trading company or manufacturer ?

A: We are Integration of industry and trade, with over 20 years experience in worm gear motor. Our company have accumulated skilled production line, complete management and powerful research support, which could match all of the customers’ requirements and make them satisfaction.
 

Q: What is your main product?

DC Motor: geared motor and micro motor without gear box
-Welding equipment: Mig mag welding machine wire feeder, Welding rod, Welding Torch, Earth clamp, Electrode holder, and Rectifier
 

Q: What if I don’t know which DC motor I need?

A: Don’t worry, if you have motor pictures or drawings to show us,or you have detailed specs like voltage,speed,torque,motor size,working mode of the motor,needed life time and noise level etc,pls do not hesitate to let us know,then we can remommend suitable motor per your request accordingly.
 

Q:Can I get same samples?

A:  It depends. If only a few samples for personal use or replacement, I am afraid it will be difficult for us to provide, because all of our motors are custom made and no stock available if there is no further needs. If just sample testing before the official order and our MOQ, price and other terms are acceptable, we’d love to provide samples.
 

Q:Is there a MOQ for your motors?

A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.
 

Q:Do you have individual design service for motors?
 

A6:Yes,we would like to design motors individually for our customers,but it may need some mould charge and design charge.

 

Q:How do you make sure motor quality?
 

A:We have our own inspection producdures:for incoming materials ,we have signed sample and drawing to make sure qualified incoming materials;for production process,we have tour inspection in the process and final inspection to make sure qualified products before shipping.

 

Q:What certifications do you have?
 

A:We currently have CE and RoHS certifications.

Q: How long is your delivery time?

A: Usually it takes about 35 days if you accept our standard output shaft.If the output shaft is customized,the production time depends on what the customization shaft it is.
 

Q:Can I visit your company?
 

A:Yes,welcome to visit our factory,our factory is HangZhou CHINAMFG Motor Co.,Ltd.The legal person is Hui Zhou,Sunny Deng’s wife.

 

Application: Automation Equipment, Moving Machinery, Industrial Automatic Machine
Operating Speed: Low Speed
Power Source: DC Motor
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|

Order Sample

Sample fee will be returned when order reaches 200
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

What are the main components of a DC motor, and how do they contribute to its functionality?

A DC (Direct Current) motor consists of several key components that work together to enable its functionality. Each component plays a crucial role in the operation of the motor. Here’s a detailed explanation of the main components of a DC motor and their contributions:

1. Stator:

The stator is the stationary part of the motor. It typically consists of permanent magnets or electromagnets that produce a fixed magnetic field. The stator’s magnetic field interacts with the rotor’s magnetic field to generate the required torque for motor rotation. The stator provides the foundation for the motor’s magnetic field and contributes to its overall stability and efficiency.

2. Rotor:

The rotor is the rotating part of the motor and is connected to the motor’s output shaft. It contains coils or windings that carry the armature current. The rotor’s windings interact with the stator’s magnetic field, resulting in the generation of a mechanical force that causes the rotor to rotate. The rotor’s movement is responsible for converting electrical energy into mechanical motion, enabling the motor to perform its intended function.

3. Armature:

The armature is the core of the rotor that holds the armature windings. The armature windings are typically made of copper wire and are evenly spaced around the armature. When a current passes through the armature windings, a magnetic field is created around them. This magnetic field interacts with the stator’s magnetic field, resulting in the generation of a torque that drives the rotor’s rotation. The armature is a critical component that facilitates the conversion of electrical energy into mechanical energy.

4. Commutator:

The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other. The commutator plays a vital role in the DC motor’s operation by providing the necessary electrical connections to the armature windings. As the rotor spins, the brushes make physical contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Brushes:

The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings. The brushes supply the current to the armature windings through the commutator, allowing for the creation of the magnetic field necessary for motor operation. The brushes need to maintain proper contact with the commutator to ensure efficient electrical transmission and reliable motor performance.

6. Housing or Frame:

The housing or frame of the DC motor encloses and supports all the internal components. It provides structural integrity, protects the motor from external elements, and helps dissipate heat generated during operation. The housing or frame also serves as a mounting point for the motor, allowing it to be securely installed in various applications.

By understanding the main components of a DC motor and their contributions, one can gain insights into how each part works together harmoniously to achieve the desired motor functionality.

dc motor

How is the efficiency of a DC motor determined, and what factors can affect it?

In a DC (Direct Current) motor, efficiency refers to the ratio of the motor’s output power (mechanical power) to its input power (electrical power). It is a measure of how effectively the motor converts electrical energy into mechanical work. The efficiency of a DC motor can be determined by considering several factors that affect its performance. Here’s a detailed explanation of how the efficiency of a DC motor is determined and the factors that can influence it:

The efficiency of a DC motor is calculated using the following formula:

Efficiency = (Output Power / Input Power) × 100%

1. Output Power: The output power of a DC motor is the mechanical power produced at the motor’s shaft. It can be calculated using the formula:

Output Power = Torque × Angular Speed

The torque is the rotational force exerted by the motor, and the angular speed is the rate at which the motor rotates. The output power represents the useful work or mechanical energy delivered by the motor.

2. Input Power: The input power of a DC motor is the electrical power supplied to the motor. It can be calculated using the formula:

Input Power = Voltage × Current

The voltage is the electrical potential difference applied to the motor, and the current is the amount of electrical current flowing through the motor. The input power represents the electrical energy consumed by the motor.

Once the output power and input power are determined, the efficiency can be calculated using the formula mentioned earlier.

Several factors can influence the efficiency of a DC motor:

1. Copper Losses:

Copper losses occur due to the resistance of the copper windings in the motor. These losses result in the conversion of electrical energy into heat. Higher resistance or increased current flow leads to greater copper losses and reduces the efficiency of the motor. Using thicker wire for the windings and minimizing resistance can help reduce copper losses.

2. Iron Losses:

Iron losses occur due to magnetic hysteresis and eddy currents in the motor’s iron core. These losses result in the conversion of electrical energy into heat. Using high-quality laminated iron cores and minimizing magnetic flux variations can help reduce iron losses and improve efficiency.

3. Friction and Windage Losses:

Friction and windage losses occur due to mechanical friction between moving parts and air resistance. These losses result in the conversion of mechanical energy into heat. Proper lubrication, efficient bearing systems, and aerodynamically optimized designs can help minimize friction and windage losses.

4. Brush and Commutator Losses:

In brushed DC motors, brush and commutator losses occur due to the friction and electrical resistance at the brush-commutator interface. These losses result in the conversion of electrical energy into heat. Using high-quality brushes and commutators, reducing brush voltage drop, and minimizing the number of commutator segments can help reduce these losses.

5. Magnetic Field Design:

The design of the magnetic field in the motor significantly affects its efficiency. Optimizing the magnetic field for the specific application, such as selecting appropriate magnet materials or designing efficient electromagnets, can improve the motor’s efficiency.

6. Motor Load:

The load on the motor, including the torque and speed requirements, can impact its efficiency. Operating the motor close to its optimal load conditions or utilizing speed control techniques, such as pulse width modulation (PWM), can help improve efficiency by reducing unnecessary power consumption.

7. Motor Size and Construction:

The size and construction of the motor can influence its efficiency. Properly sizing the motor for the intended application and optimizing the design for reduced losses, improved cooling, and efficient heat dissipation can enhance overall efficiency.

It’s important to note that the efficiency of a DC motor is typically highest at or near its rated load conditions. Deviating significantly from the rated load can result in reduced efficiency.

In summary, the efficiency of a DC motor is determined by comparing the output power to the input power. Factors such as copper losses, iron losses, friction and windage losses, brush and commutator losses, magnetic field design, motor load, and motor size and construction can all influence the efficiency of a DC motor. By considering and optimizing these factors, the overall efficiency of the motor can be improved.

dc motor

Where can individuals find reliable resources for learning more about DC motors and their applications?

Individuals seeking reliable resources to learn more about DC (Direct Current) motors and their applications can explore various sources that provide comprehensive and accurate information. Here’s a detailed explanation of where individuals can find reliable resources for learning about DC motors:

1. Manufacturer Websites:

Many DC motor manufacturers have dedicated sections on their websites that provide detailed information about their products, including specifications, application notes, technical guides, and whitepapers. These resources offer valuable insights into the design, operation, and application considerations of DC motors. Examples of reputable DC motor manufacturers include Baldor, Maxon Motor, and Faulhaber.

2. Industry Associations and Organizations:

Industry associations and organizations related to electrical engineering, automation, and motor technology can be excellent sources of reliable information. Examples include the Institute of Electrical and Electronics Engineers (IEEE) and the American Society of Mechanical Engineers (ASME). These associations often provide access to technical publications, research papers, conferences, and educational resources related to DC motors and their applications.

3. Technical Books and Publications:

Technical books and publications authored by experts in the field of electrical engineering and motor technology can provide in-depth knowledge about DC motors. Books such as “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and “Practical Electric Motor Handbook” by Irving Gottlieb are widely regarded as reliable resources for learning about DC motors and their applications.

4. Online Educational Platforms:

Online educational platforms offer a wealth of resources for learning about DC motors. Websites like Coursera, Udemy, and Khan Academy provide online courses, tutorials, and video lectures on electrical engineering, motor theory, and applications. These platforms often have courses specifically dedicated to DC motors, covering topics such as motor principles, control techniques, and practical applications.

5. Research Papers and Scientific Journals:

Research papers published in scientific journals and conference proceedings can provide detailed insights into the latest advancements and research findings related to DC motors. Platforms like IEEE Xplore, ScienceDirect, and Google Scholar can be used to search for scholarly articles on DC motors. These papers are authored by researchers and experts in the field and provide reliable and up-to-date information on various aspects of DC motor technology.

6. Online Forums and Communities:

Online forums and communities focused on electrical engineering, motor technology, and DIY projects can be valuable resources for learning about DC motors. Platforms like Reddit, Stack Exchange (Electrical Engineering section), and specialized motor forums provide opportunities to ask questions, engage in discussions, and learn from experienced individuals in the field. However, it’s important to verify information obtained from online forums as they may contain a mix of opinions and varying levels of expertise.

When accessing these resources, it’s essential to critically evaluate the information and cross-reference it with multiple sources to ensure accuracy and reliability. By utilizing a combination of manufacturer websites, industry associations, technical books, online educational platforms, research papers, and online communities, individuals can gain a comprehensive understanding of DC motors and their applications.

China wholesaler 24V 36V 48V Industrial Usage Brush PMDC Mini Electric Gear Motor 12V DC Motor with Gearbox   with Hot selling	China wholesaler 24V 36V 48V Industrial Usage Brush PMDC Mini Electric Gear Motor 12V DC Motor with Gearbox   with Hot selling
editor by CX 2023-11-16

China Professional Motor 230V with Worm Gear RV40 Worm Shaft Speed Reducer for Industrial Machine with Good quality

Product Description

Merchandise Description

1. Motor sort: Long lasting magnet DC
two. Rated velocity: 2200rpm-3500rpm
3. Defense: IP44, IP55
4. Voltage: 24V
5.Gear Ratio: 7251
six.Output speed: 2-3 rpm
seven. Output electricity: 350W on this DC motor type
eight. Gearbox: worm and wheel
9. Insulation: Course F
ten. Efficiency: sixty five%
 

Item Parameters

 

 

 

Detailed Pictures

 

 

FAQ

 

Q: How to get?
A: send us inquiry → receive our quotation → negotiate particulars → confirm the sample → sign deal/deposit → mass manufacturing → cargo all set → balance/delivery → further cooperation.

Q: How about Sample buy?
A: Sample is offered for you. you should make contact with us for details. Contact us

Q: Which shipping and delivery way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Put up,Sea are accessible.The other transport methods are also offered, you should contact us if you need to have ship by the other shipping and delivery way. 

Q: How long is the supply?
A: Devliver time depends on the amount you get. normally it normally takes fifteen-twenty five doing work times.

Q: My package has lacking items. What can I do?
A: Remember to make contact with our assistance staff and we will affirm your purchase with the package contents.We apologize for any inconveniences. 

Q: How to affirm the payment?
A: We settle for payment by T/T, PayPal, the other payment techniques also could be approved,Make sure you contact us prior to you pay by the other payment techniques. Also thirty-fifty% deposit is obtainable, the equilibrium funds ought to be paid just before transport.
 

The Benefits of Using a Gear Motor

A equipment motor works on the principle of conservation of angular momentum. As the scaled-down equipment handles far more RPM and the bigger equipment creates much more torque, the ratio among the two is increased than one particular. In the same way, a numerous gear motor follows the principle of power conservation, with the path of rotation always reverse to the a single that is adjacent to it. It’s straightforward to understand the principle guiding equipment motors and the a variety of kinds offered. Read on to find out about the different kinds of gears and their applications.

Electric motor

The option of an electrical motor for gear motor is mainly dependent on the application. There are different motor and gearhead mixtures obtainable, and some are much more effective than other individuals. However, it is vital to understand the software specifications and pick a motor that meets these requirements. In this write-up, we’ll look at some of the advantages of making use of a equipment motor. The execs and disadvantages of each kind are briefly talked about. You can acquire new equipment motors at aggressive charges, but they usually are not the most trustworthy or tough alternative for your application.
To establish which motor is greatest for your application, you’ll require to consider the load and velocity specifications. A gear motor’s efficiency (e) can be calculated by taking the enter and output values and calculating their relation. On the graph below, the input (T) and output (P) values are represented as dashed traces. The enter (I) price is represented as the torque utilized to the motor shaft. The output (P) is the volume of mechanical strength converted. A DC gear motor is 70% productive at 3.seventy five lb-in / 2,one hundred rpm.
In addition to the worm gear motor, you can also pick a compact DC worm gear motor with a variable equipment ratio from 7.5 to 80. It has a assortment of choices and can be customized-created for your certain application. The 3-stage AC equipment motor, on the other hand, works at a rated electricity of a single hp and torque of 1.143.2 kg-m. The output voltage is typically 220V.
One more critical aspect is the output shaft orientation. There are two main orientations for gearmotors: in-line and offset. In-line output shafts are most excellent for programs with high torque and short reduction ratios. If you want to stay away from backlash, choose a right angle output shaft. An offset shaft can lead to the output shaft to turn into excessively hot. If the output shaft is angled at a certain angle, it could be way too big or too modest.
Motor

Gear reducer

A equipment reducer is a unique kind of speed minimizing motor, usually utilized in large machinery, such as compressors. These reducers have no cooling fan and are not made to take care of large masses. Distinct reasons need various support variables. For occasion, a equipment that demands repeated quick accelerations and occasional load spikes requirements a gear reducer with a substantial service aspect. A gear reducer which is created for extended manufacturing shifts ought to be greater than a machine that employs it for quick intervals of time.
A gear reducer can reduce the pace of a motor by a issue of two. The reduction ratio alterations the rotation speed of the acquiring member. This alter in speed is usually required to solve problems of inertia mismatch. The torque density of a equipment reducer is measured in newton meters and will rely on the motor utilised. The very first criterion is the configuration of the input and output shafts. A equipment ratio of 2:1, for case in point, means that the output speed has been lower in fifty percent.
Bevel equipment reducers are a excellent option if the input and output shafts are perpendicular. This sort is very sturdy and is excellent for conditions exactly where the angle between two axes is tiny. However, bevel equipment reducers are expensive and require continuous upkeep. They are typically used in large-duty conveyors and farm gear. The right selection of equipment reducer for equipment motor is crucial for the efficiency and reliability of the system. To get the very best gear reducer for your software, speak to a certified company right now.
Selecting a gear reducer for a equipment motor can be difficult. The mistaken 1 can destroy an entire device, so it’s critical to know the details. You have to know the torque and velocity needs and select a motor with the appropriate ratio. A gear reducer ought to also be appropriate with the motor it really is supposed for. In some instances, a smaller sized motor with a equipment reducer will perform far better than a more substantial one.
Motor

Motor shaft

Correct alignment of the motor shaft can tremendously boost the efficiency and lifestyle span of rotating units. The proper alignment of motors and driven instruments boosts the transfer of vitality from the motor to the instrument. Incorrect alignment qualified prospects to extra noise and vibration. It could also guide to premature failure of couplings and bearings. Misalignment also benefits in enhanced shaft and coupling temperatures. Consequently, proper alignment is critical to boost the effectiveness of the driven instrument.
When deciding on the right kind of equipment prepare for your motor, you want to contemplate its power effectiveness and the torque it can manage. A helical geared motor is a lot more effective for higher output torque purposes. Dependent on the required speed and torque, you can select among an in-line and a parallel helical geared motor. Equally kinds of gears have their rewards and drawbacks. Spur gears are prevalent. They are toothed and operate parallel to the motor shaft.
A planetary gear motor can also have a linear output shaft. A stepping motor should not function at also higher existing to prevent demagnetization, which will guide to step decline or torque drop. Ensure that the motor and gearbox output shafts are secured from external impacts. If the motor and gearbox are not protected against bumps, they may possibly cause thread problems. Make positive that the motor shafts and rotors are secured from exterior impacts.
When picking a metal for your gear motor’s motor shaft, you ought to think about the cost of very hot-rolled bar inventory. Its outer levels are a lot more hard to device. This variety of content contains residual stresses and other problems that make it difficult to device. For these applications, you ought to select a large-energy steel with difficult outer layers. This variety of metal is cheaper, but it also has measurement issues. It is best to examination every material first to figure out which one satisfies your needs.
In addition to minimizing the velocity of your device, a geared motor also minimizes the torque created by your equipment. It can be utilized with equally AC and DC power. A higher-quality gear motor is crucial for stirring mechanisms and conveyor belts. However, you must pick a geared motor that makes use of large-grade gears and provides optimum effectiveness. There are several sorts of planetary gear motors and gears on the market, and it is critical to decide on the correct 1.
Motor

First stage gears

The very first phase gears of a gear motor are the most essential parts of the entire unit. The motor’s energy transmission is ninety% productive, but there are a lot of factors that can impact its functionality. The equipment ratios utilised ought to be higher enough to take care of the load, but not as well high that they are restricting the motor’s velocity. A equipment motor should also have a wholesome protection issue, and the lubricant should be enough to overcome any of these aspects.
The transmission torque of the equipment alterations with its pace. The transmission torque at the input side of the equipment decreases, transferring a modest torque to the output aspect. The number of tooth and the pitch circle diameters can be used to estimate the torque. The 1st stage gears of gear motors can be categorized as spur gears, helical gears, or worm gears. These 3 varieties of gears have different torque capacities.
The first stage helical gear is the most important component of a gear motor. Its function is to transfer rotation from one equipment to the other. Its output is the gearhead. The second stage gears are linked by a provider. They function in tandem with the initial phase gear to offer the output of the gearhead. In addition, the 1st phase provider rotates in the very same path as the enter pinion.
One more essential ingredient is the output torque of the gearmotor. When selecting a gearmotor, consider the starting torque, running torque, output pace, overhung and shock loads, responsibility cycles, and more. It is essential to select a gearmotor with the proper ratio for the software. By deciding on the proper gearmotor, you will get highest overall performance with minimal functioning charges and boost plant productiveness. For far more data on first phase gears, verify out our site.
The initial phase of a equipment motor is composed of a established of set and rotating sprockets. The first phase of these gears acts as a generate equipment. Its rotational mass is a restricting factor for torque. The next stage is made up of a rotating shaft. This shaft rotates in the route of the torque axis. It is also the restricting pressure for the motor’s torque.

China Professional Motor 230V with Worm Gear RV40 Worm Shaft Speed Reducer for Industrial Machine     with Good qualityChina Professional Motor 230V with Worm Gear RV40 Worm Shaft Speed Reducer for Industrial Machine     with Good quality

China high quality ZD CZPT Industrial Power Tools Helical Hypoid Gear Motors For Customized Project with Best Sales

Product Description

Model Assortment

ZD Chief has a vast assortment of CZPT motor generation strains in the sector, like DC Motor, AC Motor, Brushless Motor, Planetary Equipment Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox and so forth. By means of complex innovation and customization, we support you produce excellent software programs and offer adaptable options for different industrial automation circumstances.

• Model Assortment
Our skilled revenue representive and technical staff will select the proper product and transmission remedies for your usage count on your distinct parameters.

• Drawing Request

If you require far more product parameters, catalogues, CAD or 3D drawings, please speak to us.
 

• On Your Require

We can modify normal products or customise them to meet your certain wants.

In depth Images

Merchandise Parameters

Solution Variety Code

ZDF3 Measurement Chart—100W Motor

Define Drawing

Be aware : It truly is just the standard technological information for you reference, The specification this sort of as voltage, velocity, torque, shaft can be personalized by your needs. Remember to make contact with us for a lot more particulars. Thanks. 

 

Company Profile

FAQ

 

Q: What’re your major merchandise?

A: We at the moment make Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Equipment Motors, Brushless Dc Motors, Stepper motors, Ac Motors and Higher Precision Planetary Equipment Box and so on. You can check the requirements for over motors on our web site and you can email us to advise essential motors for each your specification also.

Q: How to select a suited motor?
A:If you have motor photos or drawings to display us, or you have in depth specs like voltage, pace, torque, motor size, working mode of the motor, necessary lifetime and sounds amount and so on, you should do not be reluctant to allow us know, then we can advocate ideal motor per your ask for appropriately.

Q: Do you have a personalized service for your standard motors?
A: Of course, we can customize for each your request for the voltage, velocity, torque and shaft dimension/form. If you require added wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual style provider for motors?
A: Of course, we would like to design and style motors individually for our customers, but it could need to have some mildew building cost and design charge. 

Q: What is your lead time?
A: Typically talking, our standard normal item will need 15-30days, a bit longer for customized merchandise. But we are extremely flexible on the guide time, it will rely on the certain orders.

Remember to contact us if you have thorough requests, thank you !

The Fundamentals of a Gear Motor

The standard mechanism driving the equipment motor is the theory of conservation of angular momentum. The smaller sized the equipment, the much more RPM it covers and the larger the equipment, the more torque it creates. The ratio of angular velocity of two gears is named the equipment ratio. In addition, the exact same theory applies to a number of gears. This means that the path of rotation of each adjacent gear is always the opposite of the 1 it is attached to.
Motor

Induction worm gear motor

If you’re searching for an electric powered motor that can provide substantial torque, an Induction worm gear motor might be the correct choice. This sort of motor makes use of a worm gear attached to the motor to rotate a primary gear. Simply because this type of motor is more productive than other sorts of motors, it can be employed in applications demanding huge reduction ratios, as it is ready to supply much more torque at a reduce speed.
The worm gear motor is developed with a spiral shaft that is established into splines in yet another gear. The velocity at which the worm equipment rotates is dependent on the torque made by the primary equipment. Induction worm equipment motors are ideal suited for use in reduced-voltage apps such as electric vehicles, renewable power methods, and industrial equipment. They arrive with a wide variety of electricity-offer options, including twelve-volt, 24-volt, and 36-volt AC electrical power materials.
These kinds of motors can be utilised in many industrial configurations, which includes elevators, airport products, foodstuff packaging facilities, and far more. They also generate significantly less noise than other sorts of motors, which helps make them a well-liked option for companies with constrained place. The performance of worm gearmotors tends to make them an superb decision for apps in which noise is an problem. Induction worm gear motors can be compact and really large-torque.
Whilst the Induction worm equipment motor is most extensively utilized in industrial purposes, there are other types of gearmotors obtainable. Some sorts are far more successful than others, and some are more pricey than other individuals. For your software, picking the proper motor and gearbox combination is vital to obtaining the wanted result. You may find that the Induction worm equipment motor is an excellent decision for several applications. The advantages of an Induction worm equipment motor can not be overstated.
The DC gear motor is an excellent selection for high-end industrial programs. This kind of gearmotor is smaller and lighter than a regular AC motor and can provide up to two hundred watts of torque. A equipment ratio of 3 to two can be identified in these motors, which tends to make them perfect for a extensive assortment of apps. A large-good quality DC equipment motor is a great option for many industrial programs, as they can be very productive and provide a high degree of reliability.
Electric powered equipment motors are a versatile and broadly used type of electric powered motor. Even so, there are some applications that don’t gain from them, these kinds of as apps with higher shaft velocity and lower torque. Apps this kind of as fan motors, pump and scanning equipment are examples of such substantial-pace and substantial-torque requires. The most important thought when deciding on a gearmotor is its performance. Deciding on the proper dimensions will make sure the motor operates successfully at peak effectiveness and will previous for several years.
Motor

Parallel shaft helical gear motor

The FC collection parallel shaft helical gearmotor is a compact, lightweight, and higher-functionality unit that utilizes a parallel shaft composition. Its compact layout is complemented by high transmission performance and substantial carrying ability. The motor’s material is 20CrMnTi alloy steel. The unit will come with possibly a flanged enter or bolt-on toes for set up. Its lower sound and compact design and style make it an perfect selection for a variety of purposes.
The helical gears are typically organized in two rows of a single an additional. Every row includes 1 or far more rows of tooth. The parallel row has the tooth in a helical sample, while the helical rows are lined up parallelly. In addition to this, the cross helical gears have a stage get in touch with style and do not overlap. They can be both parallel or crossed. The helical equipment motors can have any number of helical pairs, every single with a diverse pitch circle diameter.
The advantages of the Parallel Shaft Helical Gearbox include high temperature and force dealing with. It is created by competent pros using slicing-edge technological innovation, and is commonly identified for its higher performance. It is offered in a variety of complex specifications and is custom-created to match personal needs. These gearboxes are sturdy and low-sounds and characteristic high trustworthiness. You can count on to help save up to 40% of your strength by utilizing them.
The parallel shaft helical gear motors are designed to lessen the speed of a rotating part. The nodular cast iron housing will help make the device robust in tough environments, although the precision-machined gears give quiet, vibration-cost-free operation. These motors are accessible in double reduction, triple reduction, and quadruple reduction. The potential ranges from .twelve kW to forty five kW. You can choose from a broad assortment of capacities, relying on the size of your gearing wants.
The SEW-EURODRIVE parallel shaft helical gearmotor is a convenient resolution for place-constrained applications. The machine’s modular design permits for straightforward mounting and a extensive assortment of ambient temperatures. They are best for a assortment of mechanical applications, such as conveyors, augers, and far more. If you want a modest footprint, the SEW-EURODRIVE parallel shaft helical equipment motor is the greatest resolution for you.
The parallel shaft helical gears are useful for equally large and low pace purposes. Parallel helical gears are also ideal for minimal pace and minimal responsibility programs. A great example of a cross-helix equipment is the oil pump of an inside combustion engine. Each sorts of helical gears are highly reliable and supply vibration-free operation. They are more costly than traditional gear motors, but offer you much more durability and effectiveness.
Motor

Helical gear device

This helical equipment device is developed to work under a selection of demanding problems and can be utilized in a broad variety of apps. Developed for lengthy lifestyle and higher torque density, this gear device is offered in a selection of torques and gear ratios. Its layout and development make it appropriate with a vast assortment of crucial mechanical techniques. Common applications consist of conveyors, content managing, steel mills, and paper mills.
Developed for large-performance applications, the Heidrive helical gear device gives superior overall performance and price. Its modern design and style permits it to perform well beneath a extensive selection of running situations and is hugely resistant to injury. These equipment motors can be easily blended with a helical gear device. Their mixed electrical power output is one hundred Nm, and they have a higher effectiveness of up to 90%. For far more information about the helical equipment motor, make contact with a Heidrive representative.
A helical gear unit can be classified by its reference part in the standard aircraft or the turning plane. Its center hole is the very same as that of a spur gear, and its variety of enamel is the exact same. In addition to this, the helical equipment has a minimal axial thrust, which is one more important attribute. The helical gear device is much more effective at transferring torque than a spur gear, and it is quieter, as well.
These models are made to take care of huge loads. No matter whether you are using them for conveyors, augers, or for any other application that requires substantial-velocity movement, a helical equipment unit will deliver highest overall performance. A helical equipment unit from Flender can deal with four hundred,000 jobs with a high degree of dependability. Its large performance and high resistance to load ensures higher plant availability. These equipment motors are accessible in a assortment of measurements, from one-pace to multi-velocity.
PEC geared motors reward from decades of design knowledge and higher good quality materials. They are strong, silent, and offer you superb overall performance. They are obtainable in multiple configurations and are dimensionally interchangeable with other significant manufacturers. The equipment motors are produced as modular kits to lessen inventory. They can be fitted with additional components, this sort of as backstops and fans. This helps make it simple to customise your gear motors and save income although decreasing costs.
One more variety of helical gears is the double helical equipment. The double helical equipment unit has two helical faces with a gap amongst them. They are greater for enclosed gear techniques as they provide increased tooth overlap and smoother efficiency. When compared to double helical gears, they are smaller sized and much more adaptable than the Herringbone sort. So, if you are seeking for a gear motor, a helical gear device may possibly be ideal for you.

China high quality ZD CZPT Industrial Power Tools Helical Hypoid Gear Motors For Customized Project     with Best SalesChina high quality ZD CZPT Industrial Power Tools Helical Hypoid Gear Motors For Customized Project     with Best Sales