Tag Archives: gear machine

China OEM Machine Tool Modern Design gear nebulizer dc single phase Reduction Ac Motor vacuum pump connector

Product Description

 

Product Description

Our Motor Company is specialized in Mini AC Gear Motor. At present, our main products are: Gear Motor, Three phase Motor, Speed Control Motor, Brake Motor, Damping Motor, Torque Motor, DC Gear Motor and so on. They spreadly use for Machine Tools, Textile Machinery, Medical Appliance, Conveying Machine, Printing Mechanism, Food Machinery, Vending Machine, Packing Machinery, Gumming Machine and so on.

Our term is: Quality as foundation, reputation first, seeking for outstanding
Position. Excellent equipment, advanced procedure, scientific management, modern
Test method. We provide all customers both at home and abroad. With our top quality products, favorable price and sincere service. We hope that we have a good Cooperation with you to develop both sides business together.
 

Model Power Voltage Frequency Current Rated Torque Rated Speed
3IK15GN-C 15W 220V 50Hz 0.18 0.125N.m 1200rpm

 

Other Related Products

Click here to find what you are looking for:

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you !
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: Variable Speed
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

gear motor

Where can individuals find reliable resources for learning more about gear motors and their applications?

Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

1. Manufacturer Websites:

Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

2. Industry Associations and Organizations:

Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

3. Technical Publications and Journals:

Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

4. Online Forums and Communities:

Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

5. Educational Institutions and Courses:

Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

6. Trade Shows and Exhibitions:

Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China OEM Machine Tool Modern Design gear nebulizer dc single phase Reduction Ac Motor   vacuum pump connector	China OEM Machine Tool Modern Design gear nebulizer dc single phase Reduction Ac Motor   vacuum pump connector
editor by CX 2024-04-30

China Standard ZD 90mm Variable-Speed AC Brake Speed Control Gear Motor For Packing Machine vacuum pump diy

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Product Parameters

Features:

1) Dimensions: 90mm
2) Power: 60, 90, 120W
3) Voltage: 110V, 220V
4) Speed:
50Hz: 90~ 1350rpm
60Hz: 90~ 1650rpm
5) Reduction ratio: 3~ 750K
 

Gearhead Model Gear Ratio
5GN *K 3,3.6,5,6,7.5,9,12.5,15,18,25,30,36,50,60,75,90,100,120,150,180,200~750
5GN10XK(Decimal gearhead)

Other Related Products

Click here to find what you are looking for:

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Standard ZD 90mm Variable-Speed AC Brake Speed Control Gear Motor For Packing Machine   vacuum pump diyChina Standard ZD 90mm Variable-Speed AC Brake Speed Control Gear Motor For Packing Machine   vacuum pump diy
editor by CX 2024-04-25

China best 3 Single Phase Induction Single Phase Brushless Electric Machine 12V Series Synchronous Servo Gear Fan Generator Permanent Magnet AC Motor vacuum pump engine

Product Description

3 single phase induction single phase brushless electric machine 12v  series synchronous servo gear fan generator permanent magnet ac motor 

Application of Single Phase Electric Motor

Single-phase electric motors are used in a wide variety of applications, including:

  • Fans: Single-phase electric motors are used in ceiling fans, table fans, and portable fans.
  • Pumps: Single-phase electric motors are used in sump pumps, water pumps, and air pumps.
  • Compressors: Single-phase electric motors are used in air conditioners, refrigerators, and vacuum cleaners.
  • Tools: Single-phase electric motors are used in drills, saws, and other power tools.
  • Machinery: Single-phase electric motors are used in a variety of machinery, such as washing machines, dryers, and food processors.

Single-phase electric motors are typically less expensive and easier to maintain than three-phase electric motors. However, they are also less efficient and have less power.

Here are some of the advantages of single-phase electric motors:

  • Cost-effective: Single-phase electric motors are typically less expensive than three-phase electric motors.
  • Easy to maintain: Single-phase electric motors are typically easier to maintain than three-phase electric motors.
  • Widely available: Single-phase electric motors are widely available, making them a good choice for many applications.

Here are some of the disadvantages of single-phase electric motors:

  • Less efficient: Single-phase electric motors are less efficient than three-phase electric motors.
  • Less power: Single-phase electric motors have less power than three-phase electric motors.
  • Not suitable for all applications: Single-phase electric motors are not suitable for all applications. For example, they are not suitable for applications that require high power or high efficiency.

Overall, single-phase electric motors are a versatile and cost-effective option for a wide variety of applications. They are easy to maintain and widely available. However, they are less efficient and have less power than three-phase electric motors.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: High Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 12
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China best 3 Single Phase Induction Single Phase Brushless Electric Machine 12V Series Synchronous Servo Gear Fan Generator Permanent Magnet AC Motor   vacuum pump engine	China best 3 Single Phase Induction Single Phase Brushless Electric Machine 12V Series Synchronous Servo Gear Fan Generator Permanent Magnet AC Motor   vacuum pump engine
editor by CX 2024-02-04

China wholesaler China Harmonic Drive Sewing Machine Small Gear Speed Reducer Harmonic Stepper Motor vacuum pump and compressor

Product Description

Product Description:

1.Flexspline is a hollow flanging standard cylinder structure.

2.There is a large-diameter hollow shaft hole in the middle of the cam of the wave generator. The internal design of the reducer has a support bearing.

3.It has a fully sealed structure and is easy to install. It is very suitable for the occasions where the wire needs to be threaded from the center of the reducer.

Advantages:

The first:High precision,high torque

The second:dedicated technical personnel can be on-the-go to provide design solutions

The third:Factory direct sales fine workmanship durable quality assurance

The fourth:Product quality issues have a one-year warranty time, can be returned for replacement or repair

Company profile:

 

HangZhou CHINAMFG Technology Co., Ltd. established in 2014, is committed to the R & D plant of high-precision transmission components. At present, the annual production capacity can reach 45000 sets of harmonic reducers. We firmly believe in quality first. All links from raw materials to finished products are strictly supervised and controlled, which provides a CHINAMFG foundation for product quality. Our products are sold all over the country and abroad.

The harmonic reducer and other high-precision transmission components were independently developed by the company. Our company spends 20% of its sales every year on the research and development of new technologies in the industry. There are 5 people in R & D.

Our advantage is as below:

1.7 years of marketing experience

2. 5-person R & D team to provide you with technical support

3. It is sold at home and abroad and exported to Turkey and Ireland

4. The product quality is guaranteed with a one-year warranty

5. Products can be customized

Strength factory:

Our plant has an entire campus The number of workshops is around 300 Whether it’s from the production of raw materials and the procurement of raw materials to the inspection of finished products, we’re doing it ourselves. There is a complete production system

HST-III Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CHINAMFG torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 10000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 100 10.2 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
40 100 308 37.2 660 67 432 44 1232 126.7 4000 3000 ≤30 15000

HSG Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CHINAMFG torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 7 0.7 23 2.3 9 0.9 46 4.7 14000 8500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 10000 7300 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 10000 6500 ≤20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 7500 5600 ≤20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 7000 4800 ≤20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
40 100 345 35 738 75 484 49 1400 143 5600 4000 ≤20 20000

Exhibition:

Application case:

FQA:
Q: What should I provide when I choose gearbox/speed reducer?
A: The best way is to provide the motor drawing with parameter. Our engineer will check and recommend the most suitable gearbox model for your refer.
Or you can also provide below specification as well:
1) Type, model and torque.
2) Ratio or output speed
3) Working condition and connection method
4) Quality and installed machine name
5) Input mode and input speed
6) Motor brand model or flange and motor shaft size

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China wholesaler China Harmonic Drive Sewing Machine Small Gear Speed Reducer Harmonic Stepper Motor   vacuum pump and compressor	China wholesaler China Harmonic Drive Sewing Machine Small Gear Speed Reducer Harmonic Stepper Motor   vacuum pump and compressor
editor by CX 2024-02-02

China best 80mm China 1000rpm High Speed Electric 48V BLDC Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine motorbase

Product Description

BG 80BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

 

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 80BL01 48 220 3000 0.7 5.5 4000 1.37   2.1   16.5
BG 80BL02 310 440 6000 0.7 1.7 8000 0.4 2.1 5.1
BG 80BL03 48 400 3000 1.27 10 4000 2.5 30 30
We can also customize products according to customer requirements.

 

 Planetary Gear Motor Technical Data-BG
Ratio 3 6  10  24 36 64 96 216
NO-load speed 1333 666 250 166 111 62.5 41 18
Rated speed(rpm) 1000 500 187 125 83 46 31 13
Rated torque(N.m) 2.7 5.4 8.5 20.4 30.6 48 70 70

Established in 1994, HangZhou BG Motor Factory is a professional manufacturer of brushless DC motors, brushed DC motors, planetary gear motors, worm gear motors, Universal motors and AC motors. We have a plant area of 6000 square meters, multiple patent certificates, and we have the independent design and development capabilities and strong technical force, with an annual output of more than 1 million units. Since the beginning of its establishment, BG motor has focused on the overall solution of motors. We manufacture and design motors, provide professional customized services, respond quickly to customer needs, and actively help customers to solve problems. Our motor products are exported to 20 countries, including the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea etc.
Our founder, Mr. Sun, has more than 40 years of experience in motor technology, and our other engineers also have more than 15 years of experience, and 60% of our staff have more than 10 years of experience, and we can assure you that the quality of our motors is top notch.
The products cover AGV, underwater robots, robots, sewing machine industry, automobiles, medical equipment, automatic doors, lifting equipment, industrial equipment and have a wide range of applications.
We strive for CZPT in the quality of each product, and we are only a small and sophisticated manufacturer.
Our vision: Drive the world forward and make life better!

Q:1.What kind of motors can you provide?

A:At present, we mainly produce brushless DC motors, brush DC motors, AC motors, Universal Motors; the power of the motor is less than 5000W, and the diameter of the motor is not more than 200mm;

Q:2.Can you send me a price list?

A:For all of our motors, they are customized based on different requirements like lifetime, noise,voltage,and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3.Can l get some samples?

A:It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there are no further needs. If just sample testing before the official order and our MOQ,price and other terms are acceptable,we’d love to provide samples.

Q4:Can you provide OEM or ODM service?

A:Yes,OEM and ODM are both available, we have the professional R&D dept which can provide professional solutions for you.

Q5:Can l visit your factory before we place an order?

A:welcome to visit our factory,wear every pleased if we have the chance to know each other more.

Q:6.What’s the lead time for a regular order?

A:For orders, the standard lead time is 15-20 days and this time can be shorter or longer based on the different model,period and quantity.

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China best 80mm China 1000rpm High Speed Electric 48V BLDC Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine   motorbaseChina best 80mm China 1000rpm High Speed Electric 48V BLDC Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine   motorbase
editor by CX 2023-04-25

China BLDC ZD MOTOR 62mm,60W/90W,24V Brushless DC Planetary Gear Motor for Packing Machine supplier

Solution Description

BLDC CZPT 62mm,60W/90W,24V Brushless DC Planetary Equipment Motor for Packing Machine 

In depth Images

 

Related BLDC Motors

 

 

Solution Parameters

Principal info:
1. Fundamental specification: DC24V, 60W, 2500RPM S1, B Class, IP20, IP40. OR12V, 48V. 250W. Custom-made goods are welcome.
two. Rated torque of bare motor: 318mN. M, 229mNm
three. No-load noise of whole motor: <50dB, L=50cm
4. VE: AC66V, 1S, 5mA
five. Insulation resistance: >20MΩ 500V, >20MΩ 500V
six. Life: 2500H, 4000H
7. Ambient ask for: RoHS
8. Gear Ratio: 8.5, twelve.5, thirteen

 

Business Profile

 

FAQ

 

Q: What’re your major goods?
A: We at present create Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Equipment Motors, Brushless Dc Motors, Stepper motors, Ac Motors and Higher Precision Planetary Gear Box and so on. You can check out the specs for earlier mentioned motors on our web site and you can e-mail us to recommend essential motors per your specification way too.

Q: How to choose a ideal motor?
A:If you have motor images or drawings to display us, or you have in depth specs like voltage, velocity, torque, motor dimension, functioning method of the motor, required lifetime and sound stage etc, make sure you do not wait to enable us know, then we can recommend appropriate motor for each your ask for appropriately.

Q: Do you have a customized services for your common motors?
A: Of course, we can customise per your ask for for the voltage, speed, torque and shaft measurement/condition. If you need additional wires/cables soldered on the terminal or need to insert connectors, or capacitors or EMC we can make it also.

Q: Do you have an specific layout support for motors?
A: Sure, we would like to style motors separately for our consumers, but it could require some mould creating value and design cost. 

Q: What’s your guide time?
A: Usually talking, our normal normal product will need to have 15-30days, a little bit more time for customized merchandise. But we are quite versatile on the direct time, it will depend on the specific orders.

You should get in touch with us if you have thorough requests, thank you !


/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Soft Tooth Surface
Installation: Horizontal Type
Step: Double-Step

###

Customization:
Available

|



/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Soft Tooth Surface
Installation: Horizontal Type
Step: Double-Step

###

Customization:
Available

|


Benefits of a Planetary Motor

If you’re looking for an affordable way to power a machine, consider purchasing a Planetary Motor. These units are designed to provide a massive range of gear reductions, and are capable of generating much higher torques and torque density than other types of drive systems. This article will explain why you should consider purchasing one for your needs. And we’ll also discuss the differences between a planetary and spur gear system, as well as how you can benefit from them.

planetary gears

Planetary gears in a motor are used to reduce the speed of rotation of the armature 8. The reduction ratio is determined by the structure of the planetary gear device. The output shaft 5 rotates through the device with the assistance of the ring gear 4. The ring gear 4 engages with the pinion 3 once the shaft is rotated to the engagement position. The transmission of rotational torque from the ring gear to the armature causes the motor to start.
The axial end surface of a planetary gear device has two circular grooves 21. The depressed portion is used to retain lubricant. This lubricant prevents foreign particles from entering the planetary gear space. This feature enables the planetary gear device to be compact and lightweight. The cylindrical portion also minimizes the mass inertia. In this way, the planetary gear device can be a good choice for a motor with limited space.
Because of their compact footprint, planetary gears are great for reducing heat. In addition, this design allows them to be cooled. If you need high speeds and sustained performance, you may want to consider using lubricants. The lubricants present a cooling effect and reduce noise and vibration. If you want to maximize the efficiency of your motor, invest in a planetary gear hub drivetrain.
The planetary gear head has an internal sun gear that drives the multiple outer gears. These gears mesh together with the outer ring that is fixed to the motor housing. In industrial applications, planetary gears are used with an increasing number of teeth. This distribution of power ensures higher efficiency and transmittable torque. There are many advantages of using a planetary gear motor. These advantages include:
Motor

planetary gearboxes

A planetary gearbox is a type of drivetrain in which the input and output shafts are connected with a planetary structure. A planetary gearset can have three main components: an input gear, a planetary output gear, and a stationary position. Different gears can be used to change the transmission ratios. The planetary structure arrangement gives the planetary gearset high rigidity and minimizes backlash. This high rigidity is crucial for quick start-stop cycles and rotational direction.
Planetary gears need to be lubricated regularly to prevent wear and tear. In addition, transmissions must be serviced regularly, which can include fluid changes. The gears in a planetary gearbox will wear out with time, and any problems should be repaired immediately. However, if the gears are damaged, or if they are faulty, a planetary gearbox manufacturer will repair it for free.
A planetary gearbox is typically a 2-speed design, but professional manufacturers can provide triple and single-speed sets. Planetary gearboxes are also compatible with hydraulic, electromagnetic, and dynamic braking systems. The first step to designing a planetary gearbox is defining your application and the desired outcome. Famous constructors use a consultative modeling approach, starting each project by studying machine torque and operating conditions.
As the planetary gearbox is a compact design, space is limited. Therefore, bearings need to be selected carefully. The compact needle roller bearings are the most common option, but they cannot tolerate large axial forces. Those that can handle high axial forces, such as worm gears, should opt for tapered roller bearings. So, what are the advantages and disadvantages of a helical gearbox?

planetary gear motors

When we think of planetary gear motors, we tend to think of large and powerful machines, but in fact, there are many smaller, more inexpensive versions of the same machine. These motors are often made of plastic, and can be as small as six millimeters in diameter. Unlike their larger counterparts, they have only one gear in the transmission, and are made with a small diameter and small number of teeth.
They are similar to the solar system, with the planets rotating around a sun gear. The planet pinions mesh with the ring gear inside the sun gear. All of these gears are connected by a planetary carrier, which is the output shaft of the gearbox. The ring gear and planetary carrier assembly are attached to each other through a series of joints. When power is applied to any of these members, the entire assembly will rotate.
Compared to other configurations, planetary gearmotors are more complicated. Their construction consists of a sun gear centered in the center and several smaller gears that mesh with the central sun gear. These gears are enclosed in a larger internal tooth gear. This design allows them to handle larger loads than conventional gear motors, as the load is distributed among several gears. This type of motor is typically more expensive than other configurations, but can withstand the higher-load requirements of some machines.
Because they are cylindrical in shape, planetary gear motors are incredibly versatile. They can be used in various applications, including automatic transmissions. They are also used in applications where high-precision and speed are necessary. Furthermore, the planetary gear motor is robust and is characterized by low vibrations. The advantages of using a planetary gear motor are vast and include:
Motor

planetary gears vs spur gears

A planetary motor uses multiple teeth to share the load of rotating parts. This gives planetary gears high stiffness and low backlash – often as low as one or two arc minutes. These characteristics are important for applications that undergo frequent start-stop cycles or rotational direction changes. This article discusses the benefits of planetary gears and how they differ from spur gears. You can watch the animation below for a clearer understanding of how they operate and how they differ from spur gears.
Planetary gears move in a periodic manner, with a relatively small meshing frequency. As the meshing frequency increases, the amplitude of the frequency also increases. The amplitude of this frequency is small at low clearance values, and increases dramatically at higher clearance levels. The amplitude of the frequency is higher when the clearance reaches 0.2-0.6. The amplitude increases rapidly, whereas wear increases slowly after the initial 0.2-0.6-inch-wide clearance.
In high-speed, high-torque applications, a planetary motor is more effective. It has multiple contact points for greater torque and higher speed. If you are not sure which type to choose, you can consult with an expert and design a custom gear. If you are unsure of what type of motor you need, contact Twirl Motor and ask for help choosing the right one for your application.
A planetary gear arrangement offers a number of advantages over traditional fixed-axis gear system designs. The compact size allows for lower loss of effectiveness, and the more planets in the gear system enhances the torque density and capacity. Another benefit of a planetary gear system is that it is much stronger and more durable than its spur-gear counterpart. Combined with its many advantages, a planetary gear arrangement offers a superior solution to your shifting needs.
Motor

planetary gearboxes as a compact alternative to pinion-and-gear reducers

While traditional pinion-and-gear reducer design is bulky and complex, planetary gearboxes are compact and flexible. They are suitable for many applications, especially where space and weight are issues, as well as torque and speed reduction. However, understanding their mechanism and working isn’t as simple as it sounds, so here are some of the key benefits of planetary gearing.
Planetary gearboxes work by using two planetary gears that rotate around their own axes. The sun gear is used as the input, while the planetary gears are connected via a casing. The ratio of these gears is -Ns/Np, with 24 teeth in the sun gear and -3/2 on the planet gear.
Unlike traditional pinion-and-gear reducer designs, planetary gearboxes are much smaller and less expensive. A planetary gearbox is about 50% smaller and weighs less than a pinion-and-gear reducer. The smaller gear floats on top of three large gears, minimizing the effects of vibration and ensuring consistent transmission over time.
Planetary gearboxes are a good alternative to pinion-and-gear drive systems because they are smaller, less complex and offer a higher reduction ratio. Their meshing arrangement is similar to the Milky Way, with the sun gear in the middle and two or more outer gears. They are connected by a carrier that sets their spacing and incorporates an output shaft.
Compared to pinion-and-gear reduces, planetary gearboxes offer higher speed reduction and torque capacity. As a result, planetary gearboxes are small and compact and are often preferred for space-constrained applications. But what about the high torque transfer? If you’re looking for a compact alt

China BLDC ZD MOTOR 62mm,60W/90W,24V Brushless DC Planetary Gear Motor for Packing Machine     supplier China BLDC ZD MOTOR 62mm,60W/90W,24V Brushless DC Planetary Gear Motor for Packing Machine     supplier
editor by CX 2023-03-27

China 42mm 12V 24V Brushed DC Planetary Gear Motor for Lawn Mower and Breathing Machine with Hot selling

Product Description

           42mm 12v 24v brushed dc planetary gear motor for lawn mower and breathing machine
 

1. Features of PG42775
Voltage: 12V 24V
Current: 3.2-18.6A
Speed: 0.8-2000rpm
Typical applications:   Pan/tilt camera, grill, oven, cleaning machine, garbage disposers, coffee machine, infusion pumps, office equipment, household appliances, automatic actuator.

2. Specifications of PG42775


Note: It’s the typical specificaitoin for reference only, We can choose DC motor with different voltage speed to meet your torque and speed requirement.

Company Profile

1. About us
HangZhou CZPT Co. Ltd is a manufacturer and exporter of various of motors with over 10 years experience.
Our product ranges include:
1) DC Brush motor: 6-130mm diameter, 0.01-1000W output power
2) DC Spur Gear Motor: 12-110mm diameter, 0.1-300W output power
3) DC Planeary Gear Motor: 10-82mm diameter, 0.1-100W output power 
4) Brushless DC Motor: 28-110mm, 5-1500W output power 
5) Stepper Motor: NEMA 08 to NEMA 43, Can with gearbox and lead screw
6) Servo Motor: 42mm to 130mm diameter, 50-4000w 
7) AC Gear Motor: 49 to 100mm diameter, 6-140 output power 

2. Production

Packing&Delivery

Certifications

Customer Visits

FAQ
Q: What’s your main products?
A:We currently produce Brushed Dc Motors, Brushed Dc gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors and Ac Motors etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q:How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed life time and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have customized service for your standard motors?
A:Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: you have individual design service for motors?
A:Yes, we would like to design motors individually for our customers, but it may need some CZPT charge and design charge. 

Q:Can I have samples for testing first?
A:Yes, definitely you can. After confirmed the needed motor specs, we will quote and provide a proforma invoice for samples, once we get the payment, we will get a PASS from our account department to proceed samples accordingly.

Q:How do you make sure motor quality?
A:We have our own inspection procedures: for incoming materials, we have signed sample and drawing to make sure qualified incoming materials; for production process, we have tour inspection in the process and final inspection to make sure qualified products before shipping.

Q:What’s your lead time?
A:Generally speaking, our regular standard product will need 25-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depends on the specific orders

Q:What’s your payment term?
A:For all our new customers, we will need 40% deposite, 60% paid before shipment.

Q:When will you reply after got my inquiries?
A:We will response within 24 hours once get your inquires.

Q:How can I trust you to make sure my money is safe?
A:We are certified by the third party SGS and we have exported to over 85 countries up to June.2017. You can check our reputation with our current customers in your country (if our customers do not mind), or you can order via alibaba to get trade assurance from alibaba to make sure your money is safe.

Q:What’s the minimum order quantity?
A:Our minimum order quantity depends on different motor models, please email us to check. Also, we usually do not accept personal use motor orders. 

Q:What’s your shipping method for motors?
A:For samples and packages less than 100kg, we usually suggest express shipping; For heavy packages, we usually suggest air shipping or sea shipping. But it all depends on our customers’ needs.

Q:What certifications do you have?
A:We currently have CE and ROSH certifications.

Q:Can you send me your price list?
A:Since we have hundreds of different products, and price varies per different specifications, we are not CZPT to offer a price list. But we can quote within 24 hours once got your inquirues to make sure you can get the price in time.

Q:Can I visit your company?
A:Yes, welcome to visit our company, but please let us know at least 2 weeks in advance to help us make sure no other meetings during the day you visit us. Thanks!

 

Application: Household Appliances, Auto Shutter, Pan/Tilt Camera, Slot Machine
Operating Speed: Low Speed
Function: Driving
Casing Protection: Drip-Proof
Structure and Working Principle: Brush
Certification: Ce, RoHS

###

Samples:
US$ 33/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Application: Household Appliances, Auto Shutter, Pan/Tilt Camera, Slot Machine
Operating Speed: Low Speed
Function: Driving
Casing Protection: Drip-Proof
Structure and Working Principle: Brush
Certification: Ce, RoHS

###

Samples:
US$ 33/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

The Benefits of Using a Gear Motor

A gear motor works on the principle of conservation of angular momentum. As the smaller gear covers more RPM and the larger gear produces more torque, the ratio between the two is greater than one. Similarly, a multiple gear motor follows the principle of energy conservation, with the direction of rotation always opposite to the one that is adjacent to it. It’s easy to understand the concept behind gear motors and the various types available. Read on to learn about the different types of gears and their applications.

Electric motor

The choice of an electric motor for gear motor is largely dependent on the application. There are various motor and gearhead combinations available, and some are more efficient than others. However, it is critical to understand the application requirements and select a motor that meets these needs. In this article, we’ll examine some of the benefits of using a gear motor. The pros and cons of each type are briefly discussed. You can buy new gear motors at competitive prices, but they aren’t the most reliable or durable option for your application.
To determine which motor is best for your application, you’ll need to consider the load and speed requirements. A gear motor’s efficiency (e) can be calculated by taking the input and output values and calculating their relation. On the graph below, the input (T) and output (P) values are represented as dashed lines. The input (I) value is represented as the torque applied to the motor shaft. The output (P) is the amount of mechanical energy converted. A DC gear motor is 70% efficient at 3.75 lb-in / 2,100 rpm.
In addition to the worm gear motor, you can also choose a compact DC worm gear motor with a variable gear ratio from 7.5 to 80. It has a range of options and can be custom-made for your specific application. The 3-phase AC gear motor, on the other hand, works at a rated power of one hp and torque of 1.143.2 kg-m. The output voltage is typically 220V.
Another important factor is the output shaft orientation. There are two main orientations for gearmotors: in-line and offset. In-line output shafts are most ideal for applications with high torque and short reduction ratios. If you want to avoid backlash, choose a right angle output shaft. An offset shaft can cause the output shaft to become excessively hot. If the output shaft is angled at a certain angle, it may be too large or too small.
Motor

Gear reducer

A gear reducer is a special kind of speed reducing motor, usually used in large machinery, such as compressors. These reducers have no cooling fan and are not designed to handle heavy loads. Different purposes require different service factors. For instance, a machine that requires frequent fast accelerations and occasional load spikes needs a gear reducer with a high service factor. A gear reducer that’s designed for long production shifts should be larger than a machine that uses it for short periods of time.
A gear reducer can reduce the speed of a motor by a factor of two. The reduction ratio changes the rotation speed of the receiving member. This change in speed is often required to solve problems of inertia mismatch. The torque density of a gear reducer is measured in newton meters and will depend on the motor used. The first criterion is the configuration of the input and output shafts. A gear ratio of 2:1, for example, means that the output speed has been cut in half.
Bevel gear reducers are a good option if the input and output shafts are perpendicular. This type is very robust and is perfect for situations where the angle between two axes is small. However, bevel gear reducers are expensive and require constant maintenance. They are usually used in heavy-duty conveyors and farm equipment. The correct choice of gear reducer for gear motor is crucial for the efficiency and reliability of the mechanism. To get the best gear reducer for your application, talk to a qualified manufacturer today.
Choosing a gear reducer for a gear motor can be tricky. The wrong one can ruin an entire machine, so it’s important to know the specifics. You must know the torque and speed requirements and choose a motor with the appropriate ratio. A gear reducer should also be compatible with the motor it’s intended for. In some cases, a smaller motor with a gear reducer will work better than a larger one.
Motor

Motor shaft

Proper alignment of the motor shaft can greatly improve the performance and life span of rotating devices. The proper alignment of motors and driven instruments enhances the transfer of energy from the motor to the instrument. Incorrect alignment leads to additional noise and vibration. It may also lead to premature failure of couplings and bearings. Misalignment also results in increased shaft and coupling temperatures. Hence, proper alignment is critical to improve the efficiency of the driven instrument.
When choosing the correct type of gear train for your motor, you need to consider its energy efficiency and the torque it can handle. A helical geared motor is more efficient for high output torque applications. Depending on the required speed and torque, you can choose between an in-line and a parallel helical geared motor. Both types of gears have their advantages and disadvantages. Spur gears are widespread. They are toothed and run parallel to the motor shaft.
A planetary gear motor can also have a linear output shaft. A stepping motor should not operate at too high current to prevent demagnetization, which will lead to step loss or torque drop. Ensure that the motor and gearbox output shafts are protected from external impacts. If the motor and gearbox are not protected against bumps, they may cause thread defects. Make sure that the motor shafts and rotors are protected from external impacts.
When choosing a metal for your gear motor’s motor shaft, you should consider the cost of hot-rolled bar stock. Its outer layers are more difficult to machine. This type of material contains residual stresses and other problems that make it difficult to machine. For these applications, you should choose a high-strength steel with hard outer layers. This type of steel is cheaper, but it also has size considerations. It’s best to test each material first to determine which one suits your needs.
In addition to reducing the speed of your device, a geared motor also minimizes the torque generated by your machine. It can be used with both AC and DC power. A high-quality gear motor is vital for stirring mechanisms and conveyor belts. However, you should choose a geared motor that uses high-grade gears and provides maximum efficiency. There are many types of planetary gear motors and gears on the market, and it’s important to choose the right one.
Motor

First stage gears

The first stage gears of a gear motor are the most important components of the entire device. The motor’s power transmission is 90% efficient, but there are many factors that can affect its performance. The gear ratios used should be high enough to handle the load, but not too high that they are limiting the motor’s speed. A gear motor should also have a healthy safety factor, and the lubricant must be sufficient to overcome any of these factors.
The transmission torque of the gear changes with its speed. The transmission torque at the input side of the gear decreases, transferring a small torque to the output side. The number of teeth and the pitch circle diameters can be used to calculate the torque. The first stage gears of gear motors can be categorized as spur gears, helical gears, or worm gears. These three types of gears have different torque capacities.
The first stage helical gear is the most important part of a gear motor. Its function is to transfer rotation from one gear to the other. Its output is the gearhead. The second stage gears are connected by a carrier. They work in tandem with the first stage gear to provide the output of the gearhead. Moreover, the first stage carrier rotates in the same direction as the input pinion.
Another important component is the output torque of the gearmotor. When choosing a gearmotor, consider the starting torque, running torque, output speed, overhung and shock loads, duty cycles, and more. It is crucial to choose a gearmotor with the right ratio for the application. By choosing the proper gearmotor, you will get maximum performance with minimal operating costs and increase plant productivity. For more information on first stage gears, check out our blog.
The first stage of a gear motor is composed of a set of fixed and rotating sprockets. The first stage of these gears acts as a drive gear. Its rotational mass is a limiting factor for torque. The second stage consists of a rotating shaft. This shaft rotates in the direction of the torque axis. It is also the limiting force for the motor’s torque.

China 42mm 12V 24V Brushed DC Planetary Gear Motor for Lawn Mower and Breathing Machine     with Hot selling	China 42mm 12V 24V Brushed DC Planetary Gear Motor for Lawn Mower and Breathing Machine     with Hot selling
editor by czh 2022-11-28

China 12mm Reduction Geared Motor Planetary Gear Motor for Vending Machine and More motor electric

Product Description

 

Product Parameters

Model No.: KM-13F030-250-1248

Size details:
Motor Diameter: φ13mm
Gear box length : 26.5mm
Shaft length: customization
Specifications:
Rated voltage: DC 7V
Direction of rotation: CW/CCW 
No load speed: 550rpm
No load current: 0.1A 
Rated torque: 0.04kg.cm 
Rated speed: 415.1rpm

All technical data can custom made for different application.

Customized items:
DC motor, gearbox motor, vibration motor, automotive motor.
Accessories offered like encoder, gear,worm, wire, connector.
Ball bearing or Oil-impregnated bearing.
Shaft configuration(multi-knurls,D-cut shape, four-knurls etc).
Metal end cap or plastic end cap.
 Precious metal brush/ carbon brush.
Technical data.

Detailed Photos

Application

 

Certifications

Packaging & Shipping

Company Profile

Our Advantages

FAQ

1.What kind of motor do you supply?

Kinmore specializes in making DC motors & gear motors with the diameter ranging from 6mm-80mm; automotive motors and vibration motors are our strength area, too; we also provide brushless motors.
 

2.What’s the lead time for samples or mass production?

Normally, it takes 15-25 days to produce samples; about mass production, it will take 35-40 days for DC motor production and 45-60 days for gear motor production.
 

3.Could you mind sending the quotation for this motor?

For all of our motors, they are customized based on different requirements. We will offer the quotation soon after you send your specific requests and annual quantity.
 

4.Do you offer some kinds of accessories like encoder, PCB, connector, soldering wired for the motor?

We specialize in motors, instead of accessories. But if your annual demand reaches a certain amount, we will apply to the engineer for offering the accessories.

5.Are your motors certificated with UL, CB Tüv, CE?

All of our motors are UL, CB Tüv, CE compliant, and all our items are making under REACH and ROHS. We could provide motor’s exploring drawing and BOM for your products UL certificated. We also could make motors built-in filters based on your EMC directive for your EMC passing.

 

US $5
/ Piece
|
1,000 Pieces

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 2

###

Customization:
US $5
/ Piece
|
1,000 Pieces

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 2

###

Customization:

How to Select a Gear Motor

A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.

Angular geared motors

Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Motor

Planetary gearboxes

Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Motor

Hydraulic gear motors

Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Motor

Croise motors

There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.

China 12mm Reduction Geared Motor Planetary Gear Motor for Vending Machine and More     motor electric	China 12mm Reduction Geared Motor Planetary Gear Motor for Vending Machine and More     motor electric
editor by czh 2022-11-24

China Good quality AC Brake Gear Motor Low Induction Motor Can Be Used for Street Sweeping Machine wholesaler

Product Description

TaiBang Motor Industrial Group Co., Ltd.
  The primary merchandise is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV large equipment motors, Planetary equipment motor ,Worm equipment motor etc, which employed broadly in various fields of production pipelining, transportation, meals, medication, printing, fabric, packing, place of work, equipment, leisure and so forth, and is the preferred and matched solution for automatic equipment. 

6W 60mm constant pace AC equipment motor

Drawing: 2RK6GN-CZ/2GN3~20K (Brief gearbox shell 32mm)

Drawing: 2RK6GN-CZ/2GN25~180K (Limited gearbox shell 40mm)

Drawing is for normal screw gap, If need through gap, terminal box, or electronic magnet brake, need to notify the vendor.

Relationship Diagram:

Notice
Technical specs for reference only. 
Shaft dimension and technical specs(voltage,torque,pace,and so forth) can be customized. 

Welcome your visit and enquiry to our factory!
 

Rewards of a Planetary Motor

In addition to being a single of the most productive varieties of a generate, a Planetary Motor also provides a wonderful number of other advantages. These functions empower it to generate a vast assortment of gear reductions, as nicely as produce higher torques and torque density. Let us just take a closer seem at the advantages this system has to offer you. To understand what helps make it so interesting, we will investigate the distinct kinds of planetary systems.
Motor

Solar equipment

The photo voltaic gear on a planetary motor has two distinct positive aspects. It makes much less sound and warmth than a helical equipment. Its compact footprint also minimizes sound. It can operate at substantial speeds without sacrificing effectiveness. However, it have to be maintained with continual treatment to function proficiently. Photo voltaic gears can be easily ruined by h2o and other particles. Photo voltaic gears on planetary motors may need to have to be changed over time.
A planetary gearbox is composed of a solar equipment and two or much more planetary ring and spur gears. The solar gear is the primary gear and is pushed by the input shaft. The other two gears mesh with the sun equipment and engage the stationary ring gear. The three gears are held collectively by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This produces an output shaft that rotates.
An additional benefit of planetary gears is that they can transfer larger torques whilst getting compact. These positive aspects have led to the development of photo voltaic gears. They can minimize the amount of strength eaten and make far more energy. They also give a for a longer time support life. They are an excellent decision for solar-driven autos. But they must be put in by a certified solar vitality firm. And there are other rewards as effectively. When you install a photo voltaic equipment on a planetary motor, the power created by the sunlight will be transformed to beneficial vitality.
A photo voltaic equipment on a planetary motor uses a photo voltaic gear to transmit torque from the sunlight to the planet. This method performs on the principle that the sun equipment rotates at the same fee as the world gears. The sunlight equipment has a typical layout modulus of -Ns/Np. That’s why, a 24-tooth sunshine equipment equals a 3-1/2 world gear ratio. When you consider the effectiveness of photo voltaic gears on planetary motors, you will be ready to establish whether or not the photo voltaic gears are more effective.

Sunlight gear

The mechanical arrangement of a planetary motor includes of two elements: a ring equipment and a sunlight equipment. The ring equipment is fastened to the motor’s output shaft, whilst the solar equipment rolls close to and orbits close to it. The ring gear and sunshine equipment are joined by a planetary provider, and the torque they create is distributed across their teeth. The planetary framework arrangement also decreases backlash, and is crucial to accomplish a fast start off and end cycle.
When the two planetary gears rotate independently, the sunlight equipment will rotate counterclockwise and the ring-gear will change in the very same route. The ring-gear assembly is mounted in a carrier. The provider equipment and solar equipment are linked to every single other by a shaft. The planetary gears and sunlight equipment rotate about each other on the ring-gear carrier to minimize the speed of the output shaft. The planetary equipment technique can be multiplied or staged to get a higher reduction ratio.
A planetary equipment motor mimics the planetary rotation system. The enter shaft turns a central equipment, known as the sunlight gear, while the planetary gears rotate all around a stationary sunshine gear. The motor’s compact style permits it to be very easily mounted to a motor vehicle, and its low fat helps make it best for small cars. In addition to getting extremely successful, a planetary gear motor also provides numerous other advantages.
A planetary gearbox employs a sunlight gear to give torque to the other gears. The world pinions mesh with an inner tooth ring equipment to generate rotation. The carrier also acts as a hub amongst the enter equipment and output shaft. The output shaft combines these two factors, providing a larger torque. There are a few varieties of planetary gearboxes: the sunshine equipment and a wheel travel planetary gearbox.
Motor

Planetary equipment

A planetary motor gear operates by distributing rotational power along a separating plate and a cylindrical shaft. A shock-absorbing system is included in between the separating plate and cylindrical shaft. This depressed part prevents abrasion put on and international particles from moving into the device. The separating plate and shaft are positioned coaxially. In this arrangement, the enter shaft and output shaft are rotated relative to one particular an additional. The rotatable disc absorbs the influence.
Yet another gain of a planetary motor gear is its effectiveness. Planetary motor gears are hugely productive at transferring energy, with 97% of the enter strength becoming transferred to the output. They can also have higher gear ratios, and provide lower noise and backlash. This style also enables the planetary gearbox to function with electric powered motors. In addition, planetary gears also have a lengthy support existence. The effectiveness of planetary gears is owing in part to the big amount of tooth.
Other advantages of a planetary motor gear incorporate the relieve of changing ratios, as nicely as the decreased security stock. Not like other gears, planetary gears never demand unique resources for shifting ratios. They are used in several industries, and share parts across multiple sizes. This signifies that they are value-successful to make and need much less protection inventory. They can endure higher shock and wear, and are also compact. If you happen to be searching for a planetary motor equipment, you’ve got arrive to the proper area.
The axial conclude surface area of a planetary gear can be worn down by abrasion with a separating plate. In addition, international particles could enter the planetary gear system. These particles can injury the gears or even cause sound. As a consequence, you should check out planetary gears for harm and dress in. If you’re searching for a equipment, make confident it has been thoroughly analyzed and put in by a skilled.

Planetary gearbox

A planetary motor and gearbox are a frequent mixture of electric powered and mechanical electrical power resources. They share the load of rotation in between numerous equipment enamel to improve the torque potential. This style is also more rigid, with low backlash that can be as minimal as one particular or two arc minutes. The benefits of a planetary gearmotor over a typical electric powered motor contain compact size, high efficiency, and much less danger of equipment failure. Planetary equipment motors are also far more trustworthy and durable than conventional electric powered motors.
A planetary gearbox is created for a one stage of reduction, or a several-stage unit can be created with several specific cartridges. Equipment ratios could also be picked in accordance to consumer desire, either to encounter mount the output phase or to use a 5mm hex shaft. For multi-phase planetary gearboxes, there are a range of various choices offered. These incorporate high-efficiency planetary gearboxes that obtain a ninety eight% performance at single reduction. In addition, they are noiseless, and minimize warmth reduction.
A planetary gearbox may possibly be utilized to improve torque in a robotic or other automatic system. There are various sorts of planetary equipment sets offered, like gearboxes with sliding or rolling sections. When selecting a planetary gearset, think about the environment and other factors such as backlash, torque, and ratio. There are several positive aspects to a planetary gearbox and the advantages and disadvantages related with it.
Planetary gearboxes are similar to individuals in a solar technique. They function a central sun gear in the center, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like construction around a stationary sunlight gear. When the gears are engaged, they are related by a provider that is set to the machine’s shaft.
Motor

Planetary equipment motor

Planetary equipment motors decrease the rotational velocity of an armature by one or more times. The reduction ratio relies upon on the composition of the planetary gear system. The planetary equipment gadget has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a round sample to switch the pinion 3. When the pinion rotates to the engagement situation, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The outcome is that the motor cranks up.
Planetary gear motors are cylindrical in shape and are accessible in different electrical power levels. They are usually made of steel or brass and contain a number of gears that share the load. These motors can deal with substantial electricity transfers. The planetary equipment push, on the other hand, needs much more elements, these kinds of as a sun’s gear and several planetary gears. For that reason, it might not be ideal for all types of purposes. Therefore, the planetary equipment generate is generally utilized for much more sophisticated machines.
Brush dusts from the electrical motor might enter the planetary gear device and lead to it to malfunction. In addition, abrasion dress in on the separating plate can impact the equipment engagement of the planetary equipment device. If this takes place, the gears will not engage correctly and may make sound. In get to avert such a predicament from happening, it is critical to often inspect planetary equipment motors and their abrasion-resistant separating plates.
Planetary equipment motors arrive in many diverse electricity levels and dimensions. These motors are normally cylindrical in shape and are made of steel, brass, plastic, or a combination of each resources. A planetary gear motor can be used in apps exactly where space is an situation. This motor also allows for reduced gearings in tiny areas. The planetary gearing makes it possible for for massive quantities of energy transfer. The output shaft size is dependent on the equipment ratio and the motor velocity.

China Good quality AC Brake Gear Motor Low Induction Motor Can Be Used for Street Sweeping Machine     wholesaler China Good quality AC Brake Gear Motor Low Induction Motor Can Be Used for Street Sweeping Machine     wholesaler

China Custom Slow Spee High Torque Brush DC Worm Gear Motor for Automated Machine with Hot selling

Product Description

Product characteristic 
1. Stator dimension is optional
2. Safe, trustworthy, minimal noise, very good beginning, prolonged existence
3. Robust power
Rated voltage 12-24vol/50Hz

Common application 
 motor is broadly usedn in residence appliances as Microwave turing plate, Quartz heater, Dishwasher, Can opener, Knife sharpener, washing equipment

Be aware:Pls observe we could method for each buyer requirments if specification could not meet up with your requirments.

Electrical specification 

Mechanical dimensions 

ABOUT US

Ritscher group was established in 2006.we usually focus on micro-motors for household and industrial electrical equipment.Presently, we have expert micro-motor factories separatlly found in ZheJiang & ZHangZhoug province.It has 50,000 square meters vegetation and far more than five hundred employees, yearly output  is 5 million pcs and has 10 million pcs annual creating ability.Right after years improvement,we constructed a wonderful reputation in the domestic and oversea industry and have the CZPT from our  global clients.
We  commenced our organization from shaded pole motors, after 10 years growth,our merchandise  is enlarged to BLDC motors ,capacitor motors ,synchronous motors,stepping motors,servo motors, and PMDC motors.Our items  are commonly used for creating refrigerators, freezers, micro-wave ovens, air warmers, air exhausters, ventilators,ovens, air filter, massage machines and a lot of other equipments.
To style the lastest technological innovation motors and meet up with our clients requirments,we have the quite capable  R&D staff,to make certain our goods high quality ,we have quite rigid manage program for our manufacturing section & QC division,to make our value lower,we have the very professional acquire department, We devote to make each information better than we could do.
To provide quick and better services to our consumers in Australia and New Zeland,we established up branch office in Australia because 2017 with exprienced consultant to assist the company ,which will bring far more clients to get know of us.
We will hold performing our task,move ahead phase by phase to make our business area wider and brighter.

Our organization FAQ for you

(1) Q: What kind motors you can supply?
A:For now,we largely offer Kitchen area Hood Motor,DC Motor,Equipment Motor,Enthusiast Motor Refrigerator Motor,Hair Dryer Motor Blender Motor Mixer Motor,
Shade Pole Motor,Capacitor Motor,BLDC Motor PMDC Motor,Synchronous Motor,Stepping Motor etc.

(2) Q: Is it attainable to visit your manufacturing facility
A: Certain. But make sure you kindly keep us posted a couple of times in progress. We need to examine our
schedule to see if we are offered then.

(3) Q: Can I get some samples
A: It depends. If only a couple of samples for private use or alternative, I am concerned it will
be tough for us to offer, because all of our motors are custom produced and no stock
obtainable if there is no more demands. If just sample screening ahead of the formal purchase and
our MOQ, price and other phrases are suitable, we would enjoy to provide samples.

(4) Q: Is there a MOQ for your motors?
A: Sure. The MOQ is between 1000~10,000pcs for diverse types following sample acceptance.
But it really is also alright for us to accept scaled-down tons like a number of dozens, hundreds or thousands
For the original 3 orders following sample acceptance.For samples, there is no MOQ prerequisite. But the much less the much better (like no more than 5pcs) on problem that the amount is ample in case any adjustments required following first testing.

 

What Is a Equipment Motor?

A equipment motor is an electric motor coupled with a equipment train. It utilizes possibly DC or AC energy to accomplish its goal. The primary reward of a equipment reducer is its capability to multiply torque whilst keeping a compact measurement. The trade-off of this added torque will come in the form of a decreased output shaft pace and overall effectiveness. Nevertheless, correct equipment technological innovation and ratios give the best possible output and velocity profiles. This sort of motor unlocks the complete potential of OEM tools.

Inertial load

Inertial load on a gear motor is the quantity of force a rotating unit generates because of to its inverse square romantic relationship with its inertia. The greater the inertia, the less torque can be produced by the equipment motor. However, if the inertia is as well large, it can result in issues with positioning, settling time, and managing torque and velocity. Gear ratios need to be chosen for ideal energy transfer.
The duration of acceleration and braking time of a equipment motor depends on the sort of driven load. An inertia load calls for lengthier acceleration time whereas a friction load requires breakaway torque to commence the load and keep it at its preferred velocity. Too short a time period of time can result in abnormal equipment loading and might outcome in broken gears. A safe strategy is to disconnect the load when power is disconnected to avert inertia from driving again through the output shaft.
Inertia is a fundamental concept in the design of motors and travel methods. The ratio of mass and inertia of a load to a motor decides how effectively the motor can control its pace for the duration of acceleration or deceleration. The mass second of inertia, also known as rotational inertia, is dependent on the mass, geometry, and centre of mass of an item.
Motor

Applications

There are many apps of equipment motors. They offer a effective but efficient implies of speed and torque handle. They can be either AC or DC, and the two most widespread motor sorts are the 3-period asynchronous and the long lasting magnet synchronous servomotor. The sort of motor utilized for a presented software will decide its cost, trustworthiness, and complexity. Equipment motors are generally used in apps in which high torque is required and place or electrical power constraints are significant.
There are two types of equipment motors. Depending on the ratio, every gear has an output shaft and an enter shaft. Equipment motors use hydraulic pressure to produce torque. The strain builds on a single side of the motor until it generates adequate torque to energy a rotating load. This variety of motors is not recommended for applications the place load reversals take place, as the holding torque will diminish with age and shaft vibration. Nonetheless, it can be employed for precision applications.
The industry landscape shows the aggressive environment of the equipment motor market. This report also highlights key products, revenue and price generation by region and nation. The report also examines the competitive landscape by region, such as the United States, China, India, the GCC, South Africa, Brazil, and the relaxation of the entire world. It is essential to observe that the report includes segment-certain details, so that visitors can effortlessly understand the marketplace likely of the geared motors market.

Dimensions

The security element, or SF, of a equipment motor is an critical consideration when choosing one for a distinct application. It compensates for the stresses placed on the gearing and permits it to operate at maximum effectiveness. Producers provide tables detailing common applications, with multiplication variables for duty. A equipment motor with a SF of a few or a lot more is suited for hard programs, whilst a gearmotor with a SF of one or two is ideal for reasonably straightforward purposes.
The international equipment motor industry is very fragmented, with numerous little players catering to different end-use industries. The report identifies various industry traits and provides extensive details on the marketplace. It outlines historical information and delivers useful insights on the sector. The report also employs a number of methodologies and approaches to assess the market place. In addition to providing historical knowledge, it involves thorough data by market segment. In-depth investigation of market segments is offered to aid determine which technologies will be most suitable for which applications.
Motor

Expense

A equipment motor is an electrical motor that is paired with a equipment prepare. They are available in AC or DC electricity methods. In contrast to conventional motors, gear reducers can increase torque even though keeping compact proportions. But the trade-off is the diminished output shaft pace and total efficiency. Even so, when utilized accurately, a equipment motor can create optimum output and mechanical match. To realize how a gear motor performs, let us seem at two sorts: correct-angle geared motors and inline geared motors. The first two varieties are typically utilised in automation products and in agricultural and healthcare purposes. The latter variety is made for rugged programs.
In addition to its performance, DC gear motors are space-preserving and have reduced vitality consumption. They can be used in a variety of purposes such as cash counters and printers. Automated window equipment and curtains, glass curtain walls, and banknote vending machines are some of the other significant purposes of these motors. They can cost up to 10 horsepower, which is a lot for an industrial device. However, these are not all-out expensive.
Electric equipment motors are functional and widely utilised. Nevertheless, they do not perform effectively in purposes demanding high shaft pace and torque. Examples of these contain conveyor drives, frozen beverage equipment, and healthcare equipment. These purposes demand higher shaft speed, so equipment motors are not best for these apps. Nevertheless, if sounds and other troubles are not a issue, a motor-only remedy may be the far better decision. This way, you can use a one motor for a number of applications.
Motor

Maintenance

Geared motors are between the most typical tools employed for push trains. Proper upkeep can stop harm and optimize their effectiveness. A guidebook to equipment motor routine maintenance is offered from WEG. To stop further damage, comply with these servicing methods:
Routinely verify electrical connections. Examine for unfastened connections and torque them to the suggested values. Also, check out the contacts and relays to make certain they are not tangled or destroyed. Verify the setting close to the equipment motor to avert dust from clogging the passageway of electrical present. A proper servicing program will help you determine troubles and extend their lifestyle. The handbook will also inform you about any problems with the gearmotor. Nonetheless, this is not adequate – it is crucial to examine the issue of the gearbox and its components.
Carry out visible inspection. The function of visible inspection is to note any irregularities that could point out possible troubles with the equipment motor. A filthy motor could be an sign of a rough atmosphere and a whole lot of problems. You can also carry out a smell check. If you can scent a burned odor coming from the windings, there could be an overheating issue. Overheating can result in the windings to burn up and damage.
Reactive servicing is the most typical approach of motor servicing. In this variety of maintenance, you only carry out repairs if the motor stops operating because of to a malfunction. Regular inspection is needed to keep away from unexpected motor failures. By using a logbook to document motor operations, you can establish when it is time to change the gear motor. In contrast to preventive maintenance, reactive routine maintenance needs no standard assessments or providers. Nonetheless, it is recommended to complete inspections each and every six months.

China Custom Slow Spee High Torque Brush DC Worm Gear Motor for Automated Machine     with Hot sellingChina Custom Slow Spee High Torque Brush DC Worm Gear Motor for Automated Machine     with Hot selling