Tag Archives: pump reducer

China OEM Cycloidal Gear Reducer Motor Model Jxj2-17-2.2 vacuum pump engine

Product Description

Starshine Drive Cycloid Geared Motor Characteristics

1. Features:
1. Smooth running,low noise gear tooth needle more engagement.
2. Cycloidal tooth profile provides a high contact ratio to withstand overload shocks
3. Compact size: single ratio available from 1/9 to 1/87, double stage up from 1/99 to 1/7569 
4. Ideal for dynamic applications: frequent start-stop-reversing duties suits for cyclo speed reducer since inertia is low
5. Reduce maintenance costs: high reliability, long life, minimal maintenance compared to conventional gearboxes
6. Internal parts replaceable with other brands to ensure running.

7. Grease Lubricated & Oil Lubricated Models Available
8. Output Shaft Rotation Direction: Single Reduction: Clockwise Rotation; Double Reduction→ Counter Clockwise Rotation
9. Ambient Conditions: Indoor Installation:10-40 Celsius, Max 85% Humidity, Under 1000m Altitude, Well Ventilated Environment, Free of corrosive,        explosive gases, vapors and dust
10.Slow Speed Shaft Direction: Horizontal, Vertical Up & Down, Universal Direction
11.Mounting Style: Foot Mount, Flange Mount & Vertical F-flange Mount,
12. Input Connection: Cyclo Integral Motor, Hollow Input Shaft Adapter
13. Coupling Method With Driven Machine: Coupling, Gears, Chain Sprocket Or Belt
14. Cycloid reducer Capacity Range: 0.37kW ~ 11kW;

2. Technical parameters

Type Old Type Output Torque Output Shaft Dia.
SXJ00 JXJ00 98N.m φ30
SXJ01 JXJ01 221N.m φ35
SXJ02 JXJ02 448N.m φ45
SXJ03 JXJ03 986N.m φ55
SXJ04 JXJ04 1504N.m φ70
SXJ05 JXJ05 3051N.m φ90
SXJ06 JXJ06 5608N.m φ100

About Us

ZheJiang CHINAMFG Drive Co.,Ltd,the predecessor was a state-owned military mould enterprise, was established in 1965. CHINAMFG specializes in the complete power transmission solution for high-end equipment manufacturing industries based on the aim of “Platform Product, Application Design and Professional Service”.
CHINAMFG have a strong technical force with over 350 employees at present, including over 30 engineering technicians, 30 quality inspectors, covering an area of 80000 square CHINAMFG and kinds of advanced processing machines and testing equipments. We have a good foundation for the industry application development and service of high-end speed reducers & variators owning to the provincial engineering technology research center,the lab of gear speed reducers, and the base of modern R&D.

Our Team

Quality Control
Quality:Insist on Improvement,Strive for Excellence With the development of equipment manufacturing indurstry,customer never satirsfy with the current quality of our products,on the contrary,wcreate the value of quality.
Quality policy:to enhance the overall level in the field of power transmission  
Quality View:Continuous Improvement , pursuit of excellence
Quality Philosophy:Quality creates value

3. Incoming Quality Control
To establish the AQL acceptable level of incoming material control, to provide the material for the whole inspection, sampling, immunity. On the acceptance of qualified products to warehousing, substandard goods to take return, check, rework, rework inspection; responsible for tracking bad, to monitor the supplier to take corrective 
measures to prevent recurrence.

4. Process Quality Control
The manufacturing site of the first examination, inspection and final inspection, sampling according to the requirements of some projects, judging the quality change trend;
 found abnormal phenomenon of manufacturing, and supervise the production department to improve, eliminate the abnormal phenomenon or state.

5. FQC(Final QC)
After the manufacturing department will complete the product, stand in the customer’s position on the finished product quality verification, in order to ensure the quality of 
customer expectations and needs.

6. OQC(Outgoing QC)
After the product sample inspection to determine the qualified, allowing storage, but when the finished product from the warehouse before the formal delivery of the goods, there is a check, this is called the shipment inspection.Check content:In the warehouse storage and transfer status to confirm, while confirming the delivery of the 
product is a product inspection to determine the qualified products.

7. Certification.

Packing

Delivery

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Agricultural Machinery, Ceramic
Hardness: Hardened Tooth Surface
Installation: Vertical or Horizotal Type
Layout: Coaxial
Gear Shape: Planetary Conedisk Friction Type
Step: Stepless
Customization:
Available

|

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

What are some common challenges or issues associated with gear motors, and how can they be addressed?

Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:

1. Gear Wear and Failure:

Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:

  • Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
  • Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
  • Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.

2. Backlash and Inaccuracy:

Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:

  • Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
  • Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
  • Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.

3. Noise and Vibrations:

Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:

  • Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
  • Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
  • Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.

4. Overheating and Thermal Management:

Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:

  • Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
  • Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
  • Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.

5. Load Variations and Shock Loads:

Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:

  • Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
  • Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
  • Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.

By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China OEM Cycloidal Gear Reducer Motor Model Jxj2-17-2.2   vacuum pump engine	China OEM Cycloidal Gear Reducer Motor Model Jxj2-17-2.2   vacuum pump engine
editor by CX 2024-04-26

China Hot selling High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series) vacuum pump electric

Product Description

Why choose us ?
ELECTRIC MOTOR FEATURES  

Electric motor frame from 56 – 355, output range from 0.17HP to 430HP

Motor mounting type B3 (IM 1001), B35 (IM 2001), B5 (IM 3001), B14 (IM 3601), B34 (IM 2101)

Optional voltage 110V, 120V, 220V, 240V, 220/380V, 230V/400V, 380V/660V, 50HZ or 60HZ

Protection type IP44, IP54, IP55 on request 

Multiple mounting arrangement for optional           
Aluminum frame, end shields and base    

Strong cast iron frame
High strength cable
Shaft key and protector supplied        
Superior paint finish         
45# steel shaft and stainless steel shaft is optional
Electric motor continuous duty S1,S4
Electric motor have vacuum impregnation for insulation
Electric motor is class F insulation and class H insulation is optional
Electric motor has been make according to ISO9001, CE, UL, CCC, GS request

All of our products are make according to GOST, RoHS and IEC standard.

High performance and IE1, IE2, IE3 efficiency  

 

OUR ELECRIC MOTOR FOR CUSTOMER BENEFITS

Electricity saving and quiet operation
Electric motor can withstand water, dust and vermin
Electric motor very easy installation
Electric motor dependable Corrosion resistant and long life to work
Reliability performance and very competitive price.
 

HOW TO MAKE MOTOR ON CHINAMFG COMPANY

1. Silicon steel DR510, 800, 600, 360 standard use stamping of lamination stator and rotor die-casting

2. 100% copper winding and inserting stator (manual and semi-automatically)

3. Stator Vacuum impregnation and drying

4. CNC machining motor shaft, frame, end shields, etc

5. Professional workman inspecting spare parts every processing

6. Electric motor assembly product line

7. Electric motor will 100% test before painting.

8. Electric motor spray-paint on motor painting product line

9. Electric motor will 100% check again before packing.

An electric motor from material to finish motor, must pass 15 time check, and 100% testing, output power, voltage, electric current, non-load, 50% load, 75% load, 100% load and check the nameplate, packing. Finally shipping to our customer.

Att:Our company price was based on high height cold rolled steel stator to promise the efficiency ,if you need to cheaper ,you can choose short height stator or hot cold rolled steel stator ,thankyou

Product details 

YE3 PARAMETERS

SYNCHRONOUS OUTPUT SPEED=3000RPM     FREQUENCY=50HZ  VOLTAGE=380V 

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED  

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-63M1-2 0.18kw 0.53 2720 63.9 0.8 0.63 2.2 5.5 2.2 61
YE3-63M2-2 0.25kw 0.7 2720 97.1 0.81 0.88 2.2 5.5 2.2 61
YE3-71M1-2 0.37kw 1 2740 69 0.81 1.29 2.2 6.1 2.2 62
YE3-71M2-2 0.55kw 1.4 2740 72.3 0.82 1.92 2.2 6.1 2.2 62
YE3-801-2 0.75kw 1.8 2830 80.7 0.83 2.5 2.2 7 2.3 62
YE3-802-2 1.1kw 2.5 2840 82.7 0.83 3.65 2.2 7.3 2.3 62
YE3-90S-2 1.5kw 3.4 2840 84.2 0.84 4.97 2.2 7.6 2.3 67
YE3-90L-2 2.2kw 4.8 2840 85.9 0.85 7.3 2.2 7.6 2.3 67
YE3-100L-2 3kw 6.3 2870 87.1 0.87 9.95 2.2 7.8 2.3 74
YE3-112M-2 4kw 8.2 2890 88.1 0.88 13.1 2.2 8.3 2.3 77
YE3-132S1-2 5.5kw 11.1 2900 89.2 0.88 17.9 2 8.3 2.3 79
YE3-132S2-2 7.5kw 15 2900 90.1 0.89 24.4 2 7.9 2.3 79
YE3-160M1-2 11kw 21.3 2930 912 0.89 35.6 2 8.1 2.3 81
YE3-160M2-2 15kw 28.7 2930 91.9 0.89 48.6 2 8.1 2.3 81
YE3-160L-2 18.5kw 34.7 2930 92.4 0.89 60 2 8.2 2.3 81
YE3–180M-2 22kw 41.2 2940 92.7 0.89 71.2 2 8.2 2.3 83
YE3-200-L1-2 30kw 55.3 2950 93.3 0.89 96.6 2 7.6 2.3 84
YE3-200L2-2 37kw 67.9 2950 93.7 0.89 119 2 7.6 2.3 84
YE3-225M-2 45kw 82.1 2970 94 0.89 145 2 7.7 2.3 86
YE3-250M-2 55kw 100.1 2970 94.3 0.89 177 2 7.7 2.3 89
YE3-280S-2 75kw 134 2970 94.7 0.89 241 1.8 7.1 2.3 91
YE3-280M-2 90kw 160.2 2970 95 0.89 289 1.8 7.1 2.3 91

SYNCHRONOUS OUTPUT SPEED=1500RPM     FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-63M1-4 0.12kw 0.45 1310rpm 55.8 0.72 0.87 2.1 4.4 2.2 52
YE3-63M2-4 0.18kw 0.64 1310rpm 58.6 0.73 1.31 2.1 4.4 2.2 52
YE3-71M1-4 0.25kw 0.81 1330rpm 63.6 0.74 1.8 2.1 5.2 2.2 55
YE3-71M2-4 0.37kw 1.1 1330rpm 65.3 0.75 2.66 2.1 5.2 2.2 55
YE3-801-4 0.55kw 1.4 1390rpm 80.6 0.75 3.67 2.3 6.5 2.3 56
YE3-8002-4 0.75kw 1.9 1390rpm 82.5 0.75 5.01 2.3 6.6 2.3 56
YE3-90S-4 1.1kw 2.7 1400rpm 84.1 0.76 7.35 2.3 6.8 2.3 59
YE3-90L-4 1.5kw 3.6 1400rpm 85.3 0.77 10 2.3 7 2.3 59
YE3-100L1-4 2.2kw 4.8 1430rpm 86.7 0.81 14.6 2.3 7.6 2.3 64
YE3-100L2-4 3kw 6.6 1430rpm 87.7 0.82 19.9 2.3 7.6 2.3 64
YE3-112M-4 4kw 8.6 1440rpm 88.6 0.82 26.3 2.2 7.8 2.3 65
YE3-132S-4 5.5kw 11.6 1440rpm 89.6 0.83 35.9 2 7.9 2.3 71
YE3-132M-4 7.5kw 14.6 1440rpm 90.4 0.84 48.9 2 7.5 2.3 71
YE3-160M-4 11kw 22.6 1460rpm 91.4 0.85 71.5 2 7.7 2.3 73
YE3-160L-4 15kw 29.3 1460rpm 92.1 0.86 97.4 2 7.8 2.3 73
YE3-180M-4 18.5kw 35.45 1470rpm 92.6 0.86 120 2 7.8 2.3 76
YE3-180L-4 22kw 42.35 1470rpm 93 0.86 143 2 7.8 2.3 76
YE3-200L-4 30kw 57.6 1475rpm 93.6 0.86 194 2 7.3 2.3 76
YE3-225S-4 37kw 69.8 1480rpm 93.9 0.86 239 2 7.4 2.3 78
YE3-225M-4 45kw 84.5 1480rpm 94.2 0.86 290 2 7.4 2.3 78
YE3-250M-4 55kw 103.1 1485rpm 94.6 0.86 354 2 7.4 2.3 79
YE3-280S-4 75kw 139.7 1490rpm 95 0.88 481 2 6.7 2.3 80
YE3-280M-4 90kw 166.9 1485rpm 95.2 0.88 577 2 6.9 2.3 80

SYNCHRONOUS OUTPUT SPEED=1000RPM     FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-71M1-6 0.18kw 0.76 850rpm 54.6 0.66 2.02 1.9 4 2 52
YE3-71M2-6 0.25kw 0.97 850rpm 57.4 0.68 2.81 1.9 4 2 52
YE3-80M1-6 0.37kw 1.2 890rpm 68 0.7 3.88 1.9 5.5 2.1 54
YE3-80M2-6 0.55kw 1.7 890rpm 72 0.71 5.68 1.9 5.8 2.1 54
YE3-90S-6 0.75kw 2.2 910rpm 78.9 0.71 7.58 2 6 2.1 57
YE3-90L-6 1.1kw 3.8 910rpm 81 0.73 11.1 2 6 2.1 57
YE3-100L-6 1.5kw 3.8 940rpm 82.5 0.73 15.1 2 6.5 2.1 61
YE3-112M-6 2.2kw 5.4 940rpm 84.3 0.74 21.8 2 6.6 2.1 65
YE3-132S-6 3kw 7.4 960rpm 85.6 0.74 29.4 1.9 6.8 2.1 69
YE3-132M1-6 4kw 9.6 960rpm 86.8 0.74 39.2 1.9 6.8 2.1 69
YE3-132M2-6 5.5kw 12.9 960rpm 88 0.75 53.9 2 7 2.1 69
YE3-160M-6 7.5kw 17 970rpm 89.1 0.79 73.1 2.1 7 2.1 70
YE3-160L-6 11kw 24.2 970rpm 90.3 0.8 107 2.1 7.2 2.1 70
YE3-180L-6 15kw 31.6 970rpm 91.2 0.81 146 2 7.3 2.1 73
YE3-200L1-6 18.5kw 38.1 970rpm 91.7 0.81 179 2.1 7.3 2.1 73
YE3-200L2-6 22kw 44.5 970rpm 92.2 0.81 213 2.1 7.4 2.1 73
YE3-225M-6 30kw 58.6 980rpm 92.9 0.83 291 2 6.9 2.1 74
YE3-250M-6 37kw 71 980rpm 93.3 0.84 359 2.1 7.1 2.1 76
YE3-280S-6 45kw 85.9 980rpm 93.7 0.85 434 2.1 7.3 2.1 78
YE3-280M-6 55kw 104.7 980rpm 94.1 0.86 531 2.1 7.3 2.1 78

 SYNCHRONOUS OUTPUT SPEED=750RPM      FREQUENCY=50HZ  VOLTAGE=380V

MODEL

POWER 

(KW)

CURRENT 

(A)

SPEED 

(RPM)

EFF

POWER 

FACTOR

RATED 

TORQUE

TST IST TMAX

NOISE 

dB(A)

YE3-801-8 0.18kw 0.81 630rpm 56 0.61 2.5 1.8 3.3 1.9 52
YE3-802-8 0.25kw 1.1 640rpm 59 0.61 3.4 1.8 3.3 1.9 52
YE3-90S-8 0.37kw 1.4 660rpm 66 0.61 5.1 1.8 4 1.9 56
YE3-90L-8 0.55kw 2.1 660rpm 70 0.61 7.6 1.8 4 2 56
YE3-100L1-8 0.75kw 2.4 690rpm 73.5 0.67 10.2 1.8 4 2 59
YE3-100L2-8 1.1kw 3.4 690rpm 76.5 0.69 14.9 1.8 5 2 59
YE3-112M-8 1.5kw 4.4 680rpm 77.5 0.7 20 1.8 5 2 61
YE3-132S-8 2.2kw 6 710rpm 80 0.71 28.8 1.8 6 2 64
YE3-132M-8 3kw 7.9 710rpm 82.5 0.73 39.2 1.8 6 2 64
YE3-160M1-8 4kw 10.2 720rpm 85 0.73 52.7 1.9 6 2 68
YE3-160M2-8 5.5kw 13.6 720rpm 86 0.74 82.4 1.9 6 2 68
YE3-160L-8 7.5kw 17.8 720rpm 87.5 0.75 98.1 1.9 6 2 68
YE3-180L-8 11kw 25.2 730rpm 89 0.75 145 2 6.5 2 70
YE3-200L-8 15kw 34 730rpm 90.4 0.76 196 2 6.6 2 73
YE3-225S-8 18.5kw 40.5 740rpm 91.2 0.76 240 1.9 6.6 2 73
YE3-225M-8 22kw 47.3 740rpm 91.5 0.78 286 1.9 6.6 2 73
YE3-250M-8 30kw 63.4 740rpm 92.2 0.79 390 1.9 6.5 2 75
YE3-280S-8 37kw 76.8 740rpm 93 0.79 478 1.9 6.6 2

FAQ 

Q1: What about the shipping methods?

1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

 For heavy weight, you can choose to deliver the goods by air or by sea to save cost.
 

Q2: What about the payment methods?

A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.
 

Q3: How much does it cost to ship to my country?

A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.
 

Q4: What’s your delivery time?

A4: Usually we produce within 25-30days after the payment came.
 

Q5: Can I print our logo/code/series number on your motor?

A5: Yes, of course.
 

Q6: Can I order some sample for our testing?

A6: Yes, but it needs some expenses.
 

Q7: Can you customize my product in special requirement?

A7: Yes, we can offer OEM.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2.4.6.8.10.12
Customization:
Available

|

gear motor

How is the efficiency of a gear motor measured, and what factors can affect it?

The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:

Measuring Efficiency:

The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:

Efficiency = (Pout / Pin) * 100%

The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:

Pout = T * ω

The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:

Pin = V * I

By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.

Factors Affecting Efficiency:

Several factors can influence the efficiency of a gear motor. Here are some notable factors:

  • Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
  • Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
  • Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
  • Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
  • Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
  • Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.

By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China Hot selling High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series)   vacuum pump electricChina Hot selling High Effciency and High Voltage AC Asynchronous Squirrel Cage Induction Electric Motor for Water Pump, Air Compreesor, Gear Reducer Fan Blower (Y2/YE3 Series)   vacuum pump electric
editor by CX 2024-03-06

China Professional CE Approved Ye2 Ye3 Yej Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower vacuum pump ac system

Product Description

Product Description

YE3-180S-2 170V,220V,380V IP55 Copper Wire High Efficiency AC Induction Motor

General Introductions:

YE3 series super efficiency motor is our company newest design efficiency products, which in line with the second efficiency standard in the provisions of GB 186~8-2-12″the energy efficiency limit and the energy efficiency rating of small and medium-sized 3 phase asynchronous motors and IEC60034-30-2008 efficiency standard level IE4.

Advantages of this series motor: Improved structure, attractive appearance, high starting torque, high efficiency, low noise, high international protection class and insulation class, improved cooling capabilities.

YE3 series motors is suitable for almost all applications, and could be used to drive all kinds of general purpose machines such as: compressors, ventilators, pumps, etc. And can also be used in the hazardous areas with oil and chemical, steel plants. Mining industry.

Structure Declaration:

Parallel vertical radiation CHINAMFG are adopted in frame design, and the ventilating structure contains 2 separate cooling wind paths. Air external to the motor would be driven by an external fan to blow over the radiation ribs. Meanwhile, there are 4 ventilating ducts within the frame, and the inner wind path is formed by an internal fan and axiel vents on rotor sheets. In this way, the heat dissipation efficiency is improved effectively. The external fan of 2-pole motors is an one-way tube-axiel fan, whose direction of rotation is fixed, while motors with 4~8poles are provided with a two-way radial centrifugal fan, whose direction of rotation can be arbitrarily selected.

Squirrel-cage copper-bar structure or cast aluminum structure is adopted in rotor design, and the vibration is very low after high-precision dynamic balance and motor running balance tests.

The primary terminal box is mounted at the top of the frame, can be required on left or right. It also can be mounting at a 45-degree angle according to users’ needs.

Product details 

Parameter 

Package  
Export fumigation wooden case

Color template

FAQ 

Q1: What about the shipping methods?

1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

 For heavy weight, you can choose to deliver the goods by air or by sea to save cost.

Q2: What about the payment methods?

A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.

Q3: How much does it cost to ship to my country?

A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.

Q4: What’s your delivery time?

A4: Usually we produce within 25-30days after the payment came.

Q5: Can I print our logo/code/series number on your motor?

A5: Yes, of course.

Q6: Can I order some sample for our testing?

A6: Yes, but it needs some expenses.

Q7: Can you customize my product in special requirement?

A7: Yes, we can offer OEM.

Q8: What is your max temperature of motor ?

A8: 150 -250 degree can customized with special wire 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China Professional CE Approved Ye2 Ye3 Yej Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump ac system	China Professional CE Approved Ye2 Ye3 Yej Series Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump ac system
editor by CX 2024-03-05

China Hot selling One Type End Cover Reducer DC Motor vacuum pump and compressor

Product Description

 

 

 

          Dimensions        (mm)       Rated Voltage       
  (VDC)
         Rated Speed            ( r/min ) Reduction Ratio      Rated Torgue      
   (N.m)
22 12 2200-8700 1:3.7-1:516 0.011-1.0
24 12 3600-8700 1:3.7-1:516 0.034-1.0
28 12~24 3800-5100 1:3.7-1:516 0.571-3.0
32 12~24 3800-5100 1:3.7-1:720 0.030-3.0
36 12~24 2400-4300 1:3.7-1:720 0.017-3.0
42 12~24 3400-6500 1:3.5-1:294 0.014-15.0
45 12~24 2400-3600 1:3.71-1:369 0.15-10.0
52 12~24 2400-3600 1:4.5-1:312 0.30-20.0
56 12~24 1600-4000 1:3.6-1:575 0.22-30.0
71 12~24 1600-2600 1:4-1:308 0.72-54.0
82 12~24 1700-2750 1:4-1:329 1.2-120.0
92 12~24 960-2400 1:4.3-1:422 0.9-450.0
120 12~24 1600-2800 1:4.8-1:427 3.4-600.0

Features:
The planetary gearbox for transmission is widely matched with DC motor and BLDC motor. It shows the characters of high torque and controlablity as well as the high lasting torque. The perfect combination fully expresses the product’s smaller and high torque.

Packaging & Shipping:
1, Waterproof plastic bag packed in foam box and carton as outer packing.
2, Export wooden box packaging for products.

WHY CHOOSING US:

  • Open for general discussion and questions
  • Time to market or theatre of operations can be substantially reduced
  • Talented team of engineers providing innovative technical solutions
  • One stop “supplier” and complete sub-system
  • Quality products provided at competitive low cost
  • Ability to ship world wide
  • On time delivery
  • Training at Customer locations
  • Fast service on return and repair results
  • Many repeated customers

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Samples:
US$ 13/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

In which applications are DC motors commonly used, and what advantages do they offer?

DC (Direct Current) motors are widely used in various applications due to their versatility, controllability, and specific advantages they offer. Here’s a detailed explanation of the common applications of DC motors and the advantages they provide:

1. Robotics:

DC motors are extensively used in robotics for precise control of movement and manipulation. They provide high torque and speed control, allowing robots to perform tasks with accuracy and efficiency. DC motors enable robotic arms, grippers, and mobile robots to execute complex motions and interact with their environment effectively.

2. Industrial Automation:

In industrial automation, DC motors are employed in conveyors, actuators, and positioning systems. The ability to control the motor speed and torque makes them suitable for applications such as material handling, assembly lines, and CNC machines. DC motors offer precise control over acceleration, deceleration, and positioning, enhancing overall productivity and efficiency in manufacturing processes.

3. Electric Vehicles:

DC motors have been widely used in electric vehicles (EVs) for many years. They are commonly found in electric cars, motorcycles, and scooters. DC motors provide high torque from standstill, enabling efficient acceleration and smooth operation. They also offer regenerative braking capabilities, which help in energy recovery during deceleration, thereby increasing the vehicle’s overall efficiency.

4. Appliances:

DC motors are utilized in various household appliances, including fans, blenders, vacuum cleaners, and refrigerators. Their controllable speed and torque allow for efficient operation and improved energy consumption. In appliances where variable speed control is required, such as ceiling fans or blender settings, DC motors offer precise adjustment options to meet different user preferences.

5. Renewable Energy Systems:

DC motors play a crucial role in renewable energy systems, such as wind turbines and solar tracking systems. They convert the rotational energy from wind or sunlight into electrical energy. DC motors enable precise tracking of the sun’s movement for optimal solar energy collection and efficient conversion of wind energy into electricity.

6. Advantages of DC Motors:

DC motors offer several advantages that make them suitable for various applications:

  • Precise Speed Control: DC motors provide accurate and adjustable speed control, allowing for precise regulation of motor output.
  • High Starting Torque: DC motors deliver high torque at startup, making them suitable for applications requiring quick acceleration or heavy loads.
  • Controllability: DC motors can be easily controlled using voltage regulation, current limiting, and feedback control techniques.
  • Efficiency: DC motors have high efficiency, especially when operating at lower speeds.
  • Reliability: DC motors are known for their robustness and reliability, requiring minimal maintenance.
  • Compact Size: DC motors are available in various sizes and can be designed compactly, making them suitable for applications with space constraints.

These advantages make DC motors an attractive choice in various industries and applications where precise control, high starting torque, and reliability are essential.

dc motor

Can DC motors be used in renewable energy systems, such as wind turbines or solar tracking systems?

Yes, DC (Direct Current) motors can be effectively used in various renewable energy systems, including wind turbines and solar tracking systems. The unique characteristics and advantages of DC motors make them well-suited for these applications. Here’s a detailed explanation of how DC motors can be utilized in renewable energy systems:

1. Wind Turbines:

DC motors can be employed in wind turbines to convert the mechanical energy of the wind into electrical energy. There are two common configurations:

a. Direct Drive Wind Turbines:

In direct drive wind turbines, the rotor of the turbine is directly connected to a DC generator. The rotor’s rotational motion is transmitted directly to the generator, which produces DC electrical power. DC motors can be used as DC generators in this configuration. The advantage of using DC motors/generators is their simplicity, reliability, and ability to operate efficiently at variable speeds, which is beneficial in varying wind conditions.

b. Hybrid Wind Turbines:

Hybrid wind turbines combine both aerodynamic and electrical conversion systems. In this configuration, DC motors can be utilized for the pitch control mechanism and yaw control system. The pitch control mechanism adjusts the angle of the turbine blades to optimize performance, while the yaw control system enables the turbine to align itself with the wind direction. DC motors provide precise control and responsiveness required for these functions.

2. Solar Tracking Systems:

DC motors are commonly employed in solar tracking systems to maximize the efficiency of solar panels by optimizing their orientation towards the sun. There are two main types of solar tracking systems:

a. Single-Axis Solar Tracking Systems:

Single-axis solar tracking systems adjust the inclination of solar panels along a single axis (typically the east-west axis) to track the movement of the sun throughout the day. DC motors can be used to drive the rotation mechanism that adjusts the panel’s tilt angle. By continuously adjusting the panel’s position to face the sun directly, the solar energy harvested can be significantly increased, resulting in higher energy output compared to fixed solar panel installations.

b. Dual-Axis Solar Tracking Systems:

Dual-axis solar tracking systems adjust the inclination of solar panels along both the east-west and north-south axes to track the sun’s movement throughout the day and throughout the year. DC motors are utilized in the rotation mechanisms for both axes. This type of solar tracking system provides the highest possible energy yield by keeping the solar panels perpendicular to the sun’s rays at all times, maximizing the exposure to sunlight.

DC motors are preferred in renewable energy systems due to their advantages, including:

  • Efficiency at Variable Speeds: DC motors can operate efficiently at varying speeds, making them suitable for applications with fluctuating wind speeds or changing solar angles.
  • Control and Precision: DC motors offer precise control and responsiveness, allowing for accurate tracking and adjustment in wind turbines and solar tracking systems.
  • Reliability: DC motors are known for their reliability, with fewer moving parts compared to other motor types, reducing the risk of failure in remote or harsh environments.
  • Compatibility with Energy Storage Systems: DC motors can easily be integrated with energy storage systems, such as batteries or supercapacitors, to store excess electrical energy generated by wind turbines or solar panels.

In conclusion, DC motors can be effectively utilized in renewable energy systems such as wind turbines and solar tracking systems. Their efficiency, control capabilities, reliability, and compatibility with energy storage systems make them a suitable choice for these applications, contributing to the advancement of sustainable energy generation.

dc motor

Where can individuals find reliable resources for learning more about DC motors and their applications?

Individuals seeking reliable resources to learn more about DC (Direct Current) motors and their applications can explore various sources that provide comprehensive and accurate information. Here’s a detailed explanation of where individuals can find reliable resources for learning about DC motors:

1. Manufacturer Websites:

Many DC motor manufacturers have dedicated sections on their websites that provide detailed information about their products, including specifications, application notes, technical guides, and whitepapers. These resources offer valuable insights into the design, operation, and application considerations of DC motors. Examples of reputable DC motor manufacturers include Baldor, Maxon Motor, and Faulhaber.

2. Industry Associations and Organizations:

Industry associations and organizations related to electrical engineering, automation, and motor technology can be excellent sources of reliable information. Examples include the Institute of Electrical and Electronics Engineers (IEEE) and the American Society of Mechanical Engineers (ASME). These associations often provide access to technical publications, research papers, conferences, and educational resources related to DC motors and their applications.

3. Technical Books and Publications:

Technical books and publications authored by experts in the field of electrical engineering and motor technology can provide in-depth knowledge about DC motors. Books such as “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and “Practical Electric Motor Handbook” by Irving Gottlieb are widely regarded as reliable resources for learning about DC motors and their applications.

4. Online Educational Platforms:

Online educational platforms offer a wealth of resources for learning about DC motors. Websites like Coursera, Udemy, and Khan Academy provide online courses, tutorials, and video lectures on electrical engineering, motor theory, and applications. These platforms often have courses specifically dedicated to DC motors, covering topics such as motor principles, control techniques, and practical applications.

5. Research Papers and Scientific Journals:

Research papers published in scientific journals and conference proceedings can provide detailed insights into the latest advancements and research findings related to DC motors. Platforms like IEEE Xplore, ScienceDirect, and Google Scholar can be used to search for scholarly articles on DC motors. These papers are authored by researchers and experts in the field and provide reliable and up-to-date information on various aspects of DC motor technology.

6. Online Forums and Communities:

Online forums and communities focused on electrical engineering, motor technology, and DIY projects can be valuable resources for learning about DC motors. Platforms like Reddit, Stack Exchange (Electrical Engineering section), and specialized motor forums provide opportunities to ask questions, engage in discussions, and learn from experienced individuals in the field. However, it’s important to verify information obtained from online forums as they may contain a mix of opinions and varying levels of expertise.

When accessing these resources, it’s essential to critically evaluate the information and cross-reference it with multiple sources to ensure accuracy and reliability. By utilizing a combination of manufacturer websites, industry associations, technical books, online educational platforms, research papers, and online communities, individuals can gain a comprehensive understanding of DC motors and their applications.

China Hot selling One Type End Cover Reducer DC Motor   vacuum pump and compressor	China Hot selling One Type End Cover Reducer DC Motor   vacuum pump and compressor
editor by CX 2024-02-28

China Professional S Series Hollow Shaft Worm Gear Reducer AC Electric Motor with Reduction Gear Reducer vacuum pump electric

Product Description

S series hollow shaft worm gear reducer ac electric motor with reduction gear reducer

 

Input Configurations

Direct motor coupled

With IEC B5/B14 motor flange

With IEC B5/B14 motor mounted

With CHINAMFG input shaft

Output Configurations

 

CHINAMFG output shaft

CHINAMFG output shaft with flange

Hollow output shaft

Hollow output shaft with flange

Variants of the Helical Worm Gear Unit Series S / SF / SA / SAF

Foot- or flange-mounted

B5 or B14 flange-mounted

CHINAMFG shaft or hollow shaft

Hollow shaft with keyed connection, shrink disk, splined hollow shaft, or Torque Arm

 

Technical Data:

Housing material Cast iron/Ductile iron
Housing hardness HBS190-240
Gear material 20CrMnTi alloy steel
Surface hardness of gears HRC58°~62 °
Gear core hardness HRC33~40
Input / Output shaft material 42CrMo alloy steel
Input / Output shaft hardness HRC25~30
Machining precision of gears accurate grinding, 6~5 Grade
Lubricating oil GB L-CKC220-460, Shell Omala220-460
Heat treatment tempering, cementiting, quenching, etc.
Efficiency 94%~96% (depends on the transmission stage)
Noise (MAX) 60~68dB
Temp. rise (MAX) 40°C
Temp. rise (Oil)(MAX) 50°C
Vibration ≤20µm
Backlash ≤20Arcmin
Brand of bearings China top brand bearing, HRB/LYC/ZWZ/C&U. Or other brands requested, NSK.
Brand of oil seal NAK — ZheJiang or other brands requested

Features

High modular design, flexible mounting mode.
Integrated casting housing,compact dimension, stable transmitting and low noise level.
Perfect oil leakage preventing makes the good sealings and can be used in wide range of industry.
Advanced gear grinding and modified profile, high loading support and more safe operation.
High efficiency and save power.
Save cost and low maintenance.

Specification

Model

Shaft Dia.

mm

Horizontal Center Height mm

External Flange Dia.

 mm

Power

(kw)

Ratio

(i)

Nominal Torque

(Nm)

CHINAMFG Shaft

Hollow Shaft

S/SF/SA/SAF37

ф20

ф20

88

 

0.12-0.55

24-204

100

S/SF/SA/SAF47

ф25

ф30 / ф25

100

160

0.18-0.75

24-204

150

S/SF/SA/SAF57

ф30

ф35 / ф30

112

200

0.75-1.5

24-204

250

S/SF/SA/SAF67

ф35

ф45 /ф40

140

200

0.75-3

24-285

460

S/SF/SA/SAF77

ф45

ф60 / ф50

180

250

0.75-7.5

24-385

1200

S/SF/SA/SAF87

ф60

ф70 / ф60

225

350

1.1-11

24-389

2000

S/SF/SA/SAF97

ф70

ф90 / ф70

280

450

1.5-18.5

24-389

3500

Company profile

Scenario

Packing

FAQ

Q1: I want to buy your products, how can I pay?
A: You can pay via T/T(30%+70%), L/C ,D/P etc. 

Q2: How can you guarantee the quality?
A: One year’s warranty against B/L date. If you meet with quality problem, please send us pictures or video to check, we promise to send spare parts or new products to replace. Our guarantee not include inappropriate operation or wrong specification selection. 

Q3: How we select models and specifications?
A: You can email us the series code (for example: RC series helical gearbox) as well as requirement details, such as motor power,output speed or ratio, service factor or your application…as much data as possible. If you can supply some pictures or drawings,it is nice. 

Q4: If we don’t find what we want on your website, what should we do?
A: We offer 3 options:
1, You can email us the pictures, drawings or descriptions details. We will try to design your products on the basis of our
standard models.
2, Our R&D department is professional for OEM/ODM products by drawing/samples, you can send us samples, we do customized design for your bulk purchasing.
3, We can develop new products if they have good market. We have already developed many items for special using successful, such as special gearbox for agitator, cement conveyor, shoes machines and so on. 

Q5: Can we buy 1 pc of each item for quality testing?
A: Yes, we are glad to accept trial order for quality testing.

Q6: How about your product delivery time?
A: Normally for 20’container, it takes 25-30 workdays for RV series worm gearbox, 35-40 workdays for helical gearmotors. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: M1-M6
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Double-Step
Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Professional S Series Hollow Shaft Worm Gear Reducer AC Electric Motor with Reduction Gear Reducer   vacuum pump electricChina Professional S Series Hollow Shaft Worm Gear Reducer AC Electric Motor with Reduction Gear Reducer   vacuum pump electric
editor by CX 2024-02-16

China wholesaler China Harmonic Drive Sewing Machine Small Gear Speed Reducer Harmonic Stepper Motor vacuum pump and compressor

Product Description

Product Description:

1.Flexspline is a hollow flanging standard cylinder structure.

2.There is a large-diameter hollow shaft hole in the middle of the cam of the wave generator. The internal design of the reducer has a support bearing.

3.It has a fully sealed structure and is easy to install. It is very suitable for the occasions where the wire needs to be threaded from the center of the reducer.

Advantages:

The first:High precision,high torque

The second:dedicated technical personnel can be on-the-go to provide design solutions

The third:Factory direct sales fine workmanship durable quality assurance

The fourth:Product quality issues have a one-year warranty time, can be returned for replacement or repair

Company profile:

 

HangZhou CHINAMFG Technology Co., Ltd. established in 2014, is committed to the R & D plant of high-precision transmission components. At present, the annual production capacity can reach 45000 sets of harmonic reducers. We firmly believe in quality first. All links from raw materials to finished products are strictly supervised and controlled, which provides a CHINAMFG foundation for product quality. Our products are sold all over the country and abroad.

The harmonic reducer and other high-precision transmission components were independently developed by the company. Our company spends 20% of its sales every year on the research and development of new technologies in the industry. There are 5 people in R & D.

Our advantage is as below:

1.7 years of marketing experience

2. 5-person R & D team to provide you with technical support

3. It is sold at home and abroad and exported to Turkey and Ireland

4. The product quality is guaranteed with a one-year warranty

5. Products can be customized

Strength factory:

Our plant has an entire campus The number of workshops is around 300 Whether it’s from the production of raw materials and the procurement of raw materials to the inspection of finished products, we’re doing it ourselves. There is a complete production system

HST-III Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CHINAMFG torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 10000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 100 10.2 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
40 100 308 37.2 660 67 432 44 1232 126.7 4000 3000 ≤30 15000

HSG Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CHINAMFG torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
14 50 7 0.7 23 2.3 9 0.9 46 4.7 14000 8500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 10000 7300 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 10000 6500 ≤20 20000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 7500 5600 ≤20 20000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 7000 4800 ≤20 20000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
40 100 345 35 738 75 484 49 1400 143 5600 4000 ≤20 20000

Exhibition:

Application case:

FQA:
Q: What should I provide when I choose gearbox/speed reducer?
A: The best way is to provide the motor drawing with parameter. Our engineer will check and recommend the most suitable gearbox model for your refer.
Or you can also provide below specification as well:
1) Type, model and torque.
2) Ratio or output speed
3) Working condition and connection method
4) Quality and installed machine name
5) Input mode and input speed
6) Motor brand model or flange and motor shaft size

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China wholesaler China Harmonic Drive Sewing Machine Small Gear Speed Reducer Harmonic Stepper Motor   vacuum pump and compressor	China wholesaler China Harmonic Drive Sewing Machine Small Gear Speed Reducer Harmonic Stepper Motor   vacuum pump and compressor
editor by CX 2024-02-02

China Hot selling CHINAMFG Zwbmd003003-625 3mm OEM 1.5V 3V 5V 2.4rpm 50GF. Cm DC Small Planetary Gearbox Gearmotor Micro Reducer Low Rpm Gear Motor vacuum pump oil near me

Product Description

3.4MM DC Planetary Gear Motor
 

Product Description

above specifications just for reference and customizable according to requirements.

motor specifications:3mm motor
motors (optional) stepper motor
voltage(optional) 1.5-5v
input speed <=10000rpm
current 50mA max

performance Data:3mm gear stepper motor
Model Rated speed max rated torque Max Instant Torque Reduction Ratio gearbox length Overall Lenth
  rpm gf.cm gf.cm   mm mm
ZWBMD003003-5 300.0 50 150 5 6.0 10.75
ZWBMD003003-25 60.0 50 150 25 7.5 12.25
ZWBMD003003-125 12.0 50 150 125 9.0 13.75
ZWBMD003003-625 2.4 50 150 625 10.5 15.25
* The above specifications are subject to change without prior notice. They are for reference only and can be customized as required.

Please let us know your requirements and we will provide you with micro transmission solutions.
 

Product details show:

 

Application

Smart wearable devices   watch,VR,AR,XR and etc.
Household application kitchen appliances, sewing machines, corn popper, vacuum cleaner, garden tool, sanitary ware, window curtain, intelligent closestool, sweeping robot, power seat, standing desk, electric sofa, TV, computer, treadmill, spyhole, cooker hood, electric drawer, electric mosquito net, intelligent cupboard, intelligent wardrobe, automatic soap dispenser, UV baby bottle sterilizer, lifting hot pot cookware, dishwasher, washing machine, food breaking machine, dryer, air conditioning, dustbin, coffee machine, whisk,smart lock,bread maker,Window cleaning robot and etc.
communication equipment 5G base station,video conference,mobile phone and etc.
Office automation equipments   scanners, printers, multifunction machines copy machines, fax (FAX paper cutter), computer peripheral, bank machine,  screen, lifting socket,  display,notebook PC and etc.
Automotive products  conditioning damper actuator, car DVD,door lock actuator, retractable rearview mirror, meters, optic axis control device, head light beam level adjuster, car water pump, car antenna, lumbar support, EPB, car tail gate electric putter, HUD, head-up display, vehicle sunroof, EPS, AGS, car window, head restraint, E-booster, car seat, vehicle charging station and etc.
Toys and models  radio control model, automatic cruise control, ride-on toy, educational robot, programming robot, medical robot, automatic feeder, intelligent building blocks, escort robot and etc.
Medical equipments  blood pressure meter, breath machine, medical cleaning pump, medical bed, blood pressure monitors, medical ventilator, surgical staplers, infusion pump, dental instrument, self-clotting cutter, wound cleaning pump for orthopedic surgery,electronic cigarette, eyebrow pencil,fascia gun, , surgical robot,laboratory automation and etc.
Industrials   flow control valves, seismic testing,automatic reclosing,Agricultural unmanned aerial vehicle,automatic feeder ,intelligent express cabinet and etc.
Electric power tools  electric drill, screwdriver,garden tool and etc.
Precision instruments  optics instruments,automatic vending machine, wire-stripping machine and etc.
Personal care tooth brush, hair clipper, electric shaver, massager, vibrator, hair dryer, rubdown machine, scissor hair machine, foot grinder,anti-myopia pen, facial beauty equipment, hair curler,Electric threading knife,POWER PERFECT PORE, Puff machine,eyebrow tweezers and etc.
Consumer electronics camera, mobile phone,digital camera, automatic retracting device,camcorder,  kinescope DVD,headphone stereo, cassette tape recorder, bluetooth earbud charging case, turntable, tablet,UAV(unmanned aerial vehicle),surveillance camera,PTZ camera, rotating smart speaker and etc.
robots educational robot, programming robot, medical robot, escort robot and etc.

Company Profile

HangZhou CHINAMFG Machinery & Electronics Co., Ltd was established in 2001,We provide the total drive solution for customers from design, tooling fabrication, components manufacturing and assembly. 

Workshop

Testing Equipment

1) Competitive Advantages

  • 1) Competitive Advantages
    19+year experience in manufacturing motor gearbox
    We provide technical support from r&d, prototype, testing, assembly and serial production , ODM &OEM
    Competitive Price
    Product Performance: Low noise, High efficiency, Long lifespan
    Prompt Delivery: 15 working days after payment
    Small Orders Accepted

 2) Main Products

  • Precision reduction gearbox and its diameter:3.4mm-38mm,voltage:1.5-24V,power: 0.01-40W,output speed:5-2000rpm and output torque:1.0 gf.cm -50kgf.cm,

  • Customized worm and gear transmission machinery;
  • Precise electromechanical motion module;
  • Precise component and assembly of plastic and metal powder injection.

Our Services

  • ODM & OEM
  • Gearbox design and development
  • Related technology support
  • Micro drive gearbox custom solution

Packaging & Shipping

1) Packing Details

packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.
Or according to client’s requirement.

2) Shipping Details

samples will be shipped within 10 days;
batch order leading time according to the actual situation.

Certifications

Certifications

We Have passed to hold ISO9001:2015(CN11/3571),ISO14001:2004(U006616E0153R3M), ISO13485:2016(CN18/42018) and IATF16949:2016(CN11/3571.01).

and more…

FAQ

FAQ

1. Can you make the gearbox with custom specifications?
YES. We have design and development team, also a great term of engineers, each of them have
many work years experience.

2.Do you provide the samples?
YES. Our company can provide the samples to you, and the delivery time is about 5-15days according to the specification of gearbox you need.

3.What is your MOQ?
Our MOQ is 2000pcs. But at the beginning of our business, we accept small order.

4. Do you have the item in stock?
I am sorry we donot have the item in stock, All products are made with orders.

5. Do you provide technology support?
YES. Our company have design and development team, we can provide technology support if you
need.

6.How to ship to us?
We will ship the goods to you according to the DHL or UPS or FEDEX etc account you provide. 

7.How to pay the money?
We accept T/T in advance. Also we have different bank account for receiving money, like US dollors or RMB etc.

8. How can I know the product is suitable for me?
Frist, you need to provide us the more details information about the product. We will recommend the item to you according to your requirement of specification. After you confirm, we will prepare the samples to you. also we will offer some good advances according to your product use.

9. Can I come to your company to visit?
YES, you can come to our company to visit at anytime, and welcome to visit our company.

10. How do contact us ?
Please send an inquiry

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Permanent Magnet
Function: Control
Casing Protection: Drip-Proof
Number of Poles: 4
Customization:
Available

|

dc motor

Can you explain the basic working principle behind a DC motor?

A DC (Direct Current) motor operates based on the fundamental principle of electromagnetic induction. It converts electrical energy into mechanical motion by utilizing the interaction between magnetic fields and current-carrying conductors. Here’s a detailed explanation of the basic working principle behind a DC motor:

1. Construction:

A DC motor consists of several key components:

  • Stator: The stator is the stationary part of the motor and typically consists of permanent magnets or electromagnets that produce a fixed magnetic field.
  • Rotor: The rotor is the moving part of the motor and is connected to the shaft. It contains coils or windings that carry the armature current.
  • Armature: The armature is the core of the rotor that holds the armature windings. The windings are usually made of copper wire and are evenly spaced around the armature.
  • Commutator: The commutator is a cylindrical ring attached to the rotor shaft. It consists of multiple segments, usually made of copper, that are insulated from each other.
  • Brushes: The brushes are stationary contacts that make physical contact with the commutator segments. They are typically made of carbon or graphite and provide electrical connections to the armature windings.

2. Electromagnetic Induction:

When a current-carrying conductor is placed in a magnetic field, it experiences a force due to the interaction between the magnetic field and the current. This phenomenon is described by the right-hand rule, where the direction of the force is perpendicular to both the current direction and the magnetic field direction.

3. Motor Operation:

When a DC motor is powered, a DC voltage is applied to the armature windings through the brushes and commutator. The current flowing through the armature windings creates a magnetic field around the windings. This magnetic field interacts with the fixed magnetic field produced by the stator, resulting in a force that causes the rotor to rotate.

4. Commutation:

The commutation process is crucial for the continuous rotation of the rotor in a DC motor. As the rotor spins, the brushes make contact with different commutator segments, effectively reversing the direction of the current in the armature windings at the appropriate timing. This reversal of current flow ensures that the torque generated in the armature windings is always in the same direction, allowing for continuous rotation of the rotor.

5. Speed Control:

The speed of a DC motor can be controlled by varying the applied voltage. Reducing the voltage results in a decrease in the magnetic field strength, which in turn decreases the force acting on the armature windings. This reduction in force leads to a decrease in the motor’s speed. Conversely, increasing the voltage increases the speed of the motor. Precise speed control can be achieved by using electronic circuits to regulate the voltage supplied to the motor.

6. Advantages and Applications:

DC motors offer several advantages, including:

  • High starting torque, making them suitable for applications requiring high initial force.
  • Excellent speed control capabilities, allowing for precise and adjustable speed regulation.
  • Relatively simple construction and ease of maintenance.
  • Wide range of sizes and power ratings, making them adaptable to various applications.

DC motors find extensive use in numerous applications, such as robotics, industrial automation, electric vehicles, appliances, and more.

By understanding the basic working principle behind a DC motor, one can appreciate its functionality and explore its applications in different fields.

dc motor

Are there specific types of DC motors designed for different industries or applications?

Yes, there are specific types of DC (Direct Current) motors that are designed and optimized for various industries and applications. DC motors offer a wide range of performance characteristics, allowing them to be tailored to specific requirements. Here’s a detailed explanation of the types of DC motors designed for different industries or applications:

1. Brushed DC Motors:

Brushed DC motors are commonly used in applications that require simple and cost-effective motor solutions. They are suitable for applications with lower efficiency requirements and where maintenance considerations are manageable. Some common industries and applications that use brushed DC motors include:

  • Automotive: Power window mechanisms, windshield wipers, cooling fans, and seat adjustment systems.
  • Consumer Electronics: Household appliances, toys, power tools, and personal care devices.
  • Industrial Machinery: Conveyors, pumps, fans, and machine tools.

2. Brushless DC Motors:

Brushless DC motors are known for their higher efficiency, greater reliability, and precise control capabilities. They are widely used in industries and applications that demand higher performance and advanced control features. Some specific industries and applications that utilize brushless DC motors include:

  • Automotive: Electric power steering systems, electric vehicles, hybrid vehicles, and HVAC systems.
  • Aerospace and Defense: Actuators, robotics, unmanned aerial vehicles (UAVs), and missile systems.
  • Medical and Laboratory Equipment: Centrifuges, pumps, robotics, and diagnostic devices.
  • Industrial Automation: CNC machines, robotics, automated guided vehicles (AGVs), and precision motion control systems.
  • Renewable Energy: Wind turbine generators, solar tracking systems, and energy storage systems.

3. High-Torque DC Motors:

High-torque DC motors are designed to provide substantial torque output at low speeds. They are commonly used in applications that require heavy lifting or high starting torque. Industries and applications that often utilize high-torque DC motors include:

  • Material Handling: Cranes, hoists, winches, lifts, and elevators.
  • Construction and Mining: Excavators, bulldozers, drilling rigs, and conveyor systems.
  • Automotive: Electric vehicles, electric powertrains, and traction control systems.
  • Marine and Shipbuilding: Thrusters, winches, and anchor handling systems.

4. Low-Voltage DC Motors:

Low-voltage DC motors are designed to operate at lower voltages, typically below 24 volts. They are commonly used in battery-powered applications and systems where safety or specific voltage requirements exist. Some industries and applications that utilize low-voltage DC motors include:

  • Automotive: Automotive accessories, window actuators, and door locks.
  • Robotics and Hobbyist Projects: DIY robots, RC vehicles, and model trains.
  • Solar Power Systems: Solar tracking systems, solar panel actuators, and solar-powered water pumps.
  • Home Automation: Automated blinds, curtains, and smart home devices.

These are just a few examples of the types of DC motors designed for different industries and applications. The versatility and adaptability of DC motors make them suitable for a wide range of uses, and manufacturers often offer customized motor solutions to meet specific requirements.

dc motor

How does the size and power rating of a DC motor affect its suitability for different tasks?

The size and power rating of a DC (Direct Current) motor play crucial roles in determining its suitability for different tasks and applications. The size and power rating directly impact the motor’s performance characteristics, including its torque output, speed range, efficiency, and overall capabilities. Here’s a detailed explanation of how the size and power rating of a DC motor affect its suitability for different tasks:

Size of DC Motor:

The size of a DC motor refers to its physical dimensions, including its diameter, length, and overall volume. The size of the motor influences its ability to fit into specific spaces or applications with space constraints. Here are some key considerations regarding the size of a DC motor:

1. Space Limitations: In applications where space is limited, such as small robotic systems or compact machinery, smaller-sized DC motors are preferred. These motors provide a more convenient and efficient integration into the overall system design.

2. Weight Constraints: Certain applications, such as drones or lightweight robots, may have strict weight limitations. Smaller-sized DC motors are generally lighter, making them more suitable for weight-sensitive tasks where minimizing the overall system weight is essential.

3. Cooling and Heat Dissipation: The size of a DC motor can impact its ability to dissipate heat generated during operation. Smaller-sized motors may have less surface area for heat dissipation, which can lead to increased operating temperatures. In contrast, larger-sized motors typically have better heat dissipation capabilities, allowing for sustained operation under heavy loads or in high-temperature environments.

Power Rating of DC Motor:

The power rating of a DC motor refers to the maximum power it can deliver or the power it consumes during operation. The power rating determines the motor’s capacity to perform work and influences its performance characteristics. Here are some key considerations regarding the power rating of a DC motor:

1. Torque Output: The power rating of a DC motor is directly related to its torque output. Higher power-rated motors generally provide higher torque, allowing them to handle more demanding tasks or applications that require greater force or load capacity. For example, heavy-duty industrial machinery or electric vehicles often require DC motors with higher power ratings to generate sufficient torque for their intended tasks.

2. Speed Range: The power rating of a DC motor affects its speed range capabilities. Motors with higher power ratings can typically achieve higher speeds, making them suitable for applications that require rapid or high-speed operation. On the other hand, lower power-rated motors may have limited speed ranges, making them more suitable for applications that require slower or controlled movements.

3. Efficiency: The power rating of a DC motor can impact its efficiency. Higher power-rated motors tend to have better efficiency, meaning they can convert a larger proportion of electrical input power into mechanical output power. Increased efficiency is desirable in applications where energy efficiency or battery life is a critical factor, such as electric vehicles or portable devices.

4. Overload Capability: The power rating of a DC motor determines its ability to handle overloads or sudden changes in load conditions. Motors with higher power ratings generally have a greater overload capacity, allowing them to handle temporary load spikes without stalling or overheating. This characteristic is crucial in applications where intermittent or varying loads are common.

Overall, the size and power rating of a DC motor are important factors in determining its suitability for different tasks. Smaller-sized motors are advantageous in space-constrained or weight-sensitive applications, while larger-sized motors offer better heat dissipation and can handle heavier loads. Higher power-rated motors provide greater torque, speed range, efficiency, and overload capability, making them suitable for more demanding tasks. It is crucial to carefully consider the specific requirements of the application and choose a DC motor size and power rating that aligns with those requirements to ensure optimal performance and reliability.

China Hot selling CHINAMFG Zwbmd003003-625 3mm OEM 1.5V 3V 5V 2.4rpm 50GF. Cm DC Small Planetary Gearbox Gearmotor Micro Reducer Low Rpm Gear Motor   vacuum pump oil near me		China Hot selling CHINAMFG Zwbmd003003-625 3mm OEM 1.5V 3V 5V 2.4rpm 50GF. Cm DC Small Planetary Gearbox Gearmotor Micro Reducer Low Rpm Gear Motor   vacuum pump oil near me
editor by CX 2023-10-23

China Good quality 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric AC  Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower vacuum pump ac system

Product Description

Product Description

Y2 SERIES THREE PHASE ELECTRIC MOTOR

Frame number: 63 ~ 355 Power: 0.12 ~ 315KW

Working system: S1

Applications: General purpose including cutting, machine, pumps, fans, conveyors, Agricultural Machinery and food machinery 
Features:Good-looking appearance, High efficiency and energy saving, low noise and little vibration. F insulation class, IP54 or IP55 protection class

OPERATING CONDITIONS:
Ambient temperature: -15senti degree≤ 0≤ 40senti degree
Altitude: Not exceeding 1000 meters
Rated voltage: 380V, 220/380V, 380/660V, 400V, 415V
Rated frequency: 50Hz / 60 Hz

Connection:
Y Start-connection for 3KW and below
Delta-connection for 4KW or more
Duty / Rating: Continuous (S1)
Cooling type: IC411

Technical parameter:                                                                                                   

Output
(KW)

Type

Amps
(A)

Speed
(R/min)

Eff.
%

p.f.

RT
N.m

     

Noise LwdB
(A)

Weight
(Kg)

380V 50HZ 2P

0.18

Y2-631-2

0.5

2800

65.0

0.80

00.61

2.2

2.2

5.5

61

14

0.25

Y2-632-2

0.7

2800

68.0

0.81

0.96

2.2

2.2

5.5

61

14.5

0.37

Y2-711-2

1.0

2800

70.0

0.81

1.26

2.2

2.2

6.1

64

15

0.55

Y2-712-2

1.4

2800

73.0

0.82

1.88

2.2

2.3

6.1

64

15.5

0.75

Y2-801-2

1.8

2825

75.0

0.83

2.54

2.2

2.3

6.1

67

16.5

1.1

Y2-802-2

2.6

2825

77.0

0.84

3.72

2.2

2.3

7.0

67

17.5

1.5

Y2-90S-2

3.4

2840

79.0

0.84

5.04

2.2

2.3

7.0

72

21

2.2

Y2-90L-2

4.9

2840

81.0

0.85

7.40

2.2

2.3

7.0

72

25

3

Y2-100L-2

6.3

2880

83.0

0.87

9.95

2.2

2.3

7.5

76

33

4

Y2-112M-2

8.1

2890

85.0

0.88

13.22

2.2

2.3

7.5

77

41

5.5

Y2-132S1-2

11.0

2900

86.0

0.88

18.11

2.2

2.3

7.5

80

63

7.5

Y2-132S2-2

14.9

2900

87.0

0.88

24.70

2.2

2.3

7.5

80

70

11

Y2-160M1-2

21.3

2930

88.0

0.89

35.85

2.2

2.3

7.5

86

110

15

Y2-160M2-2

28.8

2930

89.0

0.89

48.89

2.2

2.3

7.5

86

120

18.5

Y2-160L-2

34.7

2930

90.5

0.90

60.30

2.2

2.3

7.5

86

135

22

Y2-180M-2

41.0

2940

91.2

0.90

71.46

2.0

2.3

7.5

89

165

30

Y2-200L1-2

55.5

2950

92.0

0.90

97.12

2.0

2.3

7.5

92

218

37

Y2-200L2-2

67.9

2950

92.3

0.90

119.78

2.0

2.3

7.5

92

230

45

Y2-225M-2

82.3

2970

92.3

0.90

144.70

2.0

2.3

7.5

92

280

55

Y2-250M-2

100.4

2970

92.5

0.90

176.85

2.0

2.3

7.5

93

365

75

Y2-280S-2

134.4

2970

93.2

0.91

241.16

2.0

2.3

7.5

94

495

90

Y2-280M-2

160.2

2970

93.8

0.91

289.39

2.0

2.3

7.5

94

565

110

Y2-315S-2

195.4

2980

94.0

0.91

352.51

1.8

2.2

7.1

96

890

132

Y2-315M-2

233.2

2980

94.5

0.91

423.02

1.8

2.2

7.1

96

980

160

Y2-315L1-2

279.3

2980

94.6

0.92

512.75

1.8

2.2

7.1

99

1055

200

Y2-315L2-2

348.4

2980

94.8

0.92

640.94

1.8

2.2

7.1

99

1110

250

Y2-355M-2

433.2

2985

95.3

0.92

799.83

1.6

2.2

7.1

103

1900

315

Y2-355L-2

544.2

2985

95.6

0.92

1007.79

1.6

2.2

7.1

103

2300

380V 50HZ 4P

0.12

Y2-631-4

0.4

1400

57.0

0.72

0.82

2.1

2.2

4.4

52

13

0.18

Y2-632-4

0.6

1400

60.0

0.73

1.23

2.1

2.2

4.4

52

13.5

0.25

Y2-711-4

0.8

1400

65.0

0.74

1.71

2.1

2.2

5.2

55

14

0.37

Y2-712-4

1.1

1400

67.0

0.75

2.54

2.1

2.2

5.2

55

14.5

0.55

Y2-801-4

1.6

1390

71.0

0.75

3.78

2.4

2.3

5.2

58

15

0.75

Y2-802-4

2.0

1490

73.0

0.77

5.15

2.4

2.3

6.0

58

16

1.1

Y2-90S-4

2.0

1400

75.0

0.77

7.50

2.3

2.3

6.0

61

23

1.5

Y2-90L-4

3.7

1420

78.0

0.79

10.23

2.3

2.3

6.0

61

25

2.2

Y2-100L1-4

5.2

1420

80.0

0.81

14.80

2.3

2.3

7.0

64

33

3.

Y2-100L2-4

6.8

1420

82.0

0.82

20.18

2.3

2.3

7.0

64

35

4.

Y2-112M-4

8.8

1440

84.0

0.82

26.53

2.3

2.3

7.0

65

41

5.5

Y2-132S-4

11.8

1440

85.0

0.83

36.48

2.3

2.3

7.0

71

65

7.5

Y2-132M-S

15.6

1440

87.0

0.84

49.74

2.2

2.3

7.0

71

76

11

Y2-160M-4

22.3

1460

88.0

0.85

71.59

2.2

2.3

7.0

75

118

15

Y2-160L-4

30.1

1460

89.0

0.85

98.12

2.2

2.3

7.5

75

132

18.5

Y2-180M-4

36.5

1470

90.5

0.85

120.19

2.2

2.3

7.5

76

164

22

Y2-1180L-4

43.2

1470

91.0

0.85

142.93

2.2

2.3

7.5

76

182

30

Y2-200L-4

57.6

1480

92.0

0.86

193.68

2.2

2.3

7.2

79

245

37

Y2-225S-4

69.9

1480

92.5

0.87

238.87

2.2

2.3

7.2

81

258

45

Y2-225M-4

84.7

1480

92.8

0.87

290.37

2.2

2.3

7.2

81

290

55

Y2-250M-4

103.3

1480

93.0

0.87

354.90

2.2

2.3

7.2

83

388

75

Y2-280S-4

139.6

1480

93.8

0.87

483.95

2.2

2.3

7.2

86

510

90

Y2-280M-4

166.9

1485

94.2

0.87

578.79

2.2

2.3

7.2

86

606

110

Y2-315S-4

201.0

1485

94.5

0.88

707.41

2.1

2.2

6.9

93

910

132

Y2-315M-4

240.4

1485

94.8

0.88

848.89

2.1

2.2

6.9

93

1000

160

Y2-315L1-4

287.8

1485

94.9

0.89

1571.96

2.1

2.2

6.9

97

1055

200

Y2-315L2-4

359.4

1485

95.0

0.89

1286.20

2.1

2.2

6.9

97

1128

250

Y2-355M-4

442.9

1490

95.3

0.90

1602.35

2.1

2.2

6.9

101

1700

315

Y2-355L-4

556.2

1490

95.6

0.90

2018.96

2.1

2.2

6.9

101

1900

380V 50HZ 6P

0.18

Y2-711-6

0.8

900

56.0

0.60

1.91

1.9

2.0

4.0

52

14

0.25

Y2-711-6

0.9

900

59.0

0.68

2.65

1.9

2.0

4.0

52

14.5

0.37

Y2-801-6

1.3

900

62.0

0.70

3.93

1.9

2.0

4.7

54

15

0.55

Y2-802-6

1.8

900

65.0

0.72

5.84

1.9

2.1

4.7

54

16

0.75

Y2-90S-6

2.3

910

69.0

0.72

7.87

2.0

2.1

5.5

57

19

1.1

Y2-90L-6

3.2

910

72.0

0.73

11.54

2.0

2.1

5.5

57

22

1.5

Y2-100L-6

3.9

940

76.0

0.76

15.24

2.0

2.1

5.5

61

32

2.2

Y2-112M-6

5.6

940

79.0

0.76

22.35

2.1

2.1

6.5

65

41

3

Y2-132S-6

7.4

960

81.0

0.76

29.84

2.1

2.1

6.5

69

63

4

Y2-132M1-6

9.9

960

82.0

0.76

39.79

2.1

2.1

6.5

69

72

5.5

Y2-132M-6

12.9

960

84.0

0.77

54.71

2.1

2.1

6.5

69

81

7.5

Y2-160M-6

16.9

970

86.0

0.78

73.84

2.0

2.1

6.5

73

118

11

Y2-160L-6

24.2

970

87.5

0.79

108.30

2.0

2.1

6.5

73

145

15

Y2-180L-6

31.6

970

89.0

0.81

147.68

2.1

2.1

7.0

73

178

18.5

Y2-200L1-6

38.6

970

90.0

0.81

182.14

2.1

2.1

7.0

76

200

22

Y2-200L2-6

44.7

970

90.0

0.83

216.60

2.1

2.1

7.0

76

228

30

Y2-225M-6

59.3

980

91.5

0.84

292.35

2.0

2.1

7.0

76

265

37

Y2-250M-6

71.1

980

92.0

0.86

360.56

2.1

2.1

7.0

78

370

45

Y2-280S-6

85.9

980

92.5

0.86

438.52

2.1

2.0

7.0

80

490

55

Y2-280M-6

104.7

980

92.8

0.86

535.97

2.1

2.0

7.0

80

540

75

Y2-315S-6

141.7

980

93.5

0.86

730.87

2.0

2.0

7.0

85

900

90

Y2-315M-6

169.5

985

93.8

0.86

872.59

2.0

2.0

7.0

85

980

110

Y2-315L1-6

206.7

985

94.0

0.86

1066.50

2.0

2.0

6.7

85

1045

132

Y2-315L2-6

244.7

985

94.2

0.87

1279.80

2.0

2.0

6.7

85

1100

160

Y2-355M1-6

292.3

990

94.5

0.88

1543.43

1.9

2.0

6.7

92

1440

200 Y2-355M2-6 364.6 990 94.7 0.88 1929.29 1.9 2.0 6.7 92 1600

250

Y2-355L-6

454.8

990

94.9

0.88

2411.62

1.9

2.0

6.7

92

1700

PRODUCTION PROCESSING:
PAINTING COLOR CODE:

Application: Universal
Operating Speed: Low Speed
Number of Stator: Three-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Squirrel-Cage
Casing Protection: Protection Type
Customization:
Available

|

China Good quality 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric AC  Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump ac system	China Good quality 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric AC  Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump ac system
editor by CX 2023-10-19

China factory 0.37kw-315kw Y2 Three Phase Asynchronous Induction AC Electric Motor for Pump Compressor Gear Reducer Fan Farm Machines 2pole with Great quality

Solution Description

> Item Introduction

Gphq Y2/YE2 15HP/CV 11kw Solid Iron 3 Phase Electrical AC Motor

Y2/ YE2 Sequence Solid Iron A few Phase Induction Motor is specifically made for European industry, whose terminal box is located on the prime of motor.They are totally enclosed and admirer-cooling designed. They are recently made in conformity with the appropriate needs / rules of IEC specifications.

For the Link Design of 2p 4p 6p 8p Y2 motor, make sure you refer to the Identify Plate on the motor (The Y Connection is adopted by motors’ Output equivalent or under 3kW The Delta-Connection is adopted by motors’ Output previously mentioned 4kW).

 > Programs

Standard location and machine without having unique requirments, for instance: machine instruments, pumps, supporters, transportation equipment, mixer, agriculture machinery, food devices, agitator, air compressor and so forth. We also can supply aluminum housing kind for body size under the common of IEC.

> Our Electrical Motor Rewards

one. Fantastic quality of supplies(Chilly silicon metal/a hundred% copper wire/ Aluminum frame)
2.Colorful wiring
3.Clear nameplate
four.Reputable package
5.High effectiveness, lower sound
6.Very best supplies make very best performance

FAQ
one, Q:what is your MOQ for ac synchronous motor ?
A: 5pc is alright for each variety electric powered motor 

two, Q: What about your guarantee for your 3 phase  motor?
A: 1 12 months ,but apart from guy-created wrecked

3, Q: which payment way you can take ?
A: TT, western union .

four, Q: how about your payment way ?
A: a hundred%payment in superior much less $5000 ,thirty% payment in superior payment , 70% payment just before sending more than $5000.

five, Q: how about your packing of  induction motor ?
A: carton or plywood circumstance ,if less 1 container , we can CZPT all merchandise with pallet for little dimension motor

six, Q: What information must be provided, if I buy electric ac motor from you ?
A: rated electrical power, pace or pole ,type ,voltage , mounting way , quantity , if a lot more is greater.

Rewards of a Planetary Motor

Besides becoming one particular of the most productive types of a travel, a Planetary Motor also gives a wonderful number of other advantages. These functions enable it to develop a vast selection of gear reductions, as nicely as generate increased torques and torque density. Let us just take a closer look at the advantages this mechanism has to offer you. To recognize what helps make it so appealing, we’ll discover the different sorts of planetary techniques.
Motor

Solar equipment

The solar equipment on a planetary motor has two distinctive rewards. It makes significantly less sounds and warmth than a helical gear. Its compact footprint also minimizes sounds. It can work at large speeds without sacrificing performance. However, it need to be managed with continuous care to work effectively. Photo voltaic gears can be simply broken by drinking water and other debris. Solar gears on planetary motors could need to have to be changed over time.
A planetary gearbox is composed of a sunshine equipment and two or more planetary ring and spur gears. The solar gear is the main gear and is driven by the input shaft. The other two gears mesh with the sunshine equipment and have interaction the stationary ring equipment. The 3 gears are held jointly by a provider, which sets the spacing. The output shaft then turns the planetary gears. This produces an output shaft that rotates.
An additional gain of planetary gears is that they can transfer increased torques although getting compact. These positive aspects have led to the development of solar gears. They can minimize the quantity of vitality eaten and generate far more energy. They also offer a more time services lifestyle. They are an exceptional decision for photo voltaic-run automobiles. But they should be set up by a qualified solar vitality company. And there are other positive aspects as well. When you set up a photo voltaic equipment on a planetary motor, the power developed by the sunlight will be transformed to valuable strength.
A solar gear on a planetary motor employs a solar equipment to transmit torque from the sun to the planet. This program functions on the principle that the sun equipment rotates at the same price as the planet gears. The sunlight gear has a common layout modulus of -Ns/Np. That’s why, a 24-tooth sun gear equals a 3-1/2 earth gear ratio. When you contemplate the performance of solar gears on planetary motors, you will be in a position to determine no matter whether the photo voltaic gears are much more effective.

Sunshine gear

The mechanical arrangement of a planetary motor includes of two parts: a ring gear and a sun gear. The ring gear is fastened to the motor’s output shaft, although the solar gear rolls all around and orbits close to it. The ring gear and solar equipment are linked by a planetary provider, and the torque they produce is dispersed throughout their teeth. The planetary composition arrangement also lowers backlash, and is crucial to attain a swift commence and end cycle.
When the two planetary gears rotate independently, the sun equipment will rotate counterclockwise and the ring-equipment will change in the very same direction. The ring-gear assembly is mounted in a provider. The carrier gear and sun gear are linked to each and every other by a shaft. The planetary gears and solar gear rotate close to each other on the ring-gear carrier to minimize the speed of the output shaft. The planetary gear program can be multiplied or staged to get a higher reduction ratio.
A planetary equipment motor mimics the planetary rotation system. The input shaft turns a central gear, recognized as the sun gear, whilst the planetary gears rotate close to a stationary sunshine gear. The motor’s compact style allows it to be effortlessly mounted to a vehicle, and its minimal excess weight makes it excellent for little automobiles. In addition to becoming extremely successful, a planetary gear motor also offers many other positive aspects.
A planetary gearbox utilizes a sunlight equipment to give torque to the other gears. The earth pinions mesh with an inner tooth ring equipment to generate rotation. The provider also acts as a hub among the enter equipment and output shaft. The output shaft combines these two elements, giving a higher torque. There are a few sorts of planetary gearboxes: the sunshine equipment and a wheel travel planetary gearbox.
Motor

Planetary equipment

A planetary motor equipment functions by distributing rotational power together a separating plate and a cylindrical shaft. A shock-absorbing gadget is included in between the separating plate and cylindrical shaft. This frustrated portion prevents abrasion wear and international particles from moving into the unit. The separating plate and shaft are positioned coaxially. In this arrangement, the enter shaft and output shaft are rotated relative to a single one more. The rotatable disc absorbs the impact.
An additional advantage of a planetary motor equipment is its effectiveness. Planetary motor gears are highly productive at transferring power, with 97% of the input power being transferred to the output. They can also have large gear ratios, and offer you reduced noise and backlash. This style also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a extended support existence. The performance of planetary gears is due in part to the big number of enamel.
Other rewards of a planetary motor equipment include the ease of altering ratios, as well as the diminished safety stock. Not like other gears, planetary gears do not demand special equipment for shifting ratios. They are employed in several industries, and share areas across several dimensions. This signifies that they are value-powerful to produce and require much less basic safety stock. They can face up to large shock and use, and are also compact. If you might be seeking for a planetary motor equipment, you have come to the right place.
The axial finish surface area of a planetary equipment can be worn down by abrasion with a separating plate. In addition, overseas particles may enter the planetary gear system. These particles can harm the gears or even trigger sound. As a end result, you must verify planetary gears for damage and use. If you happen to be searching for a gear, make certain it has been completely analyzed and put in by a expert.

Planetary gearbox

A planetary motor and gearbox are a widespread mix of electric and mechanical power resources. They share the load of rotation among multiple gear teeth to enhance the torque ability. This design and style is also far more rigid, with low backlash that can be as lower as one or two arc minutes. The positive aspects of a planetary gearmotor more than a traditional electric powered motor contain compact size, higher performance, and considerably less risk of equipment failure. Planetary equipment motors are also a lot more reliable and durable than standard electric powered motors.
A planetary gearbox is developed for a single phase of reduction, or a several-phase unit can be built with a number of individual cartridges. Equipment ratios might also be chosen according to person preference, either to confront mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a selection of distinct possibilities obtainable. These incorporate large-efficiency planetary gearboxes that attain a ninety eight% efficiency at solitary reduction. In addition, they are noiseless, and decrease heat decline.
A planetary gearbox may be used to improve torque in a robot or other automatic system. There are various sorts of planetary equipment sets accessible, which includes gearboxes with sliding or rolling sections. When picking a planetary gearset, consider the surroundings and other aspects such as backlash, torque, and ratio. There are many positive aspects to a planetary gearbox and the rewards and drawbacks related with it.
Planetary gearboxes are comparable to people in a photo voltaic technique. They function a central solar equipment in the center, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like framework about a stationary sunshine equipment. When the gears are engaged, they are linked by a provider that is set to the machine’s shaft.
Motor

Planetary gear motor

Planetary equipment motors reduce the rotational speed of an armature by 1 or far more instances. The reduction ratio is dependent on the framework of the planetary gear gadget. The planetary equipment system has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular sample to change the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring equipment then transmits the rotational torque to the armature shaft. The consequence is that the motor cranks up.
Planetary gear motors are cylindrical in condition and are accessible in numerous power stages. They are generally made of steel or brass and have multiple gears that share the load. These motors can handle massive power transfers. The planetary equipment push, on the other hand, demands more factors, these kinds of as a sun’s equipment and several planetary gears. Consequently, it might not be suited for all sorts of programs. For that reason, the planetary equipment drive is typically utilized for much more intricate equipment.
Brush dusts from the electric powered motor may enter the planetary equipment system and result in it to malfunction. In addition, abrasion put on on the separating plate can affect the gear engagement of the planetary equipment unit. If this takes place, the gears will not have interaction correctly and may make sounds. In buy to stop such a predicament from occurring, it is essential to routinely examine planetary equipment motors and their abrasion-resistant separating plates.
Planetary gear motors arrive in many distinct electrical power ranges and measurements. These motors are typically cylindrical in condition and are manufactured of steel, brass, plastic, or a mixture of equally materials. A planetary equipment motor can be utilised in applications in which area is an problem. This motor also allows for lower gearings in little spaces. The planetary gearing allows for large amounts of energy transfer. The output shaft measurement is dependent on the equipment ratio and the motor velocity.

China factory 0.37kw-315kw Y2 Three Phase Asynchronous Induction AC Electric Motor for Pump Compressor Gear Reducer Fan Farm Machines 2pole     with Great qualityChina factory 0.37kw-315kw Y2 Three Phase Asynchronous Induction AC Electric Motor for Pump Compressor Gear Reducer Fan Farm Machines 2pole     with Great quality