Tag Archives: motor dc with encoder

China factory 45mm 12V 24V 36V 48V High Torque Low Rpm Brush or Brushless DC Planetary Gear Motor with Encoder Option vacuum pump oil

Product Description

A. 45mm High Torque DC Planetary Gear Motor with Encoder Specification:

1. Voltage: 6V 12V 24V
2. Speed: 1-1600rpm
3. Torque: 1-200kg. Cm rated torque
4. Gearbox 45mm Dia X 33.6-73.8mm length
5. Motor’s voltage, speed, torque, shaft can accept customizied requirment after evaluation.
6. Packing Details: 28*26*22.5cm, N. W. 14KGS 40PCS/CTNS
7. The datasheet and price range only typical data for reference, Gear motor’s price are usually decide by Motor’s reduction ratio and torque. Please fell free to contact with me if youwant this motor

Dimension: 

  
B. Company Capacity
 1. Production line

2. Test equipment:

3. Certificates:

4 Exhibitions And Customer Visit:

5. FAQ(Q=Question, A=Answer)

Q: What’s your main products?
A:We currently produce Brushed Dc Motors, Brushed Dc gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors and Ac Motors etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q:How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed life time and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have customized service for your standard motors?
A:Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q:Do you have individual design service for motors?
A:Yes, we would like to design motors individually for our customers, but it may need some mould charge and design charge. 

Q:Can I have samples for testing first?
A:Yes, definitely you can. After confirmed the needed motor specs, we will quote and provide a proforma invoice for samples, once we get the payment, we will get a PASS from our account department to proceed samples accordingly.

Q:How do you make sure motor quality?
A:We have our own inspection procedures: for incoming materials, we have signed sample and drawing to make sure qualified incoming materials; for production process, we have tour inspection in the process and final inspection to make sure qualified products before shipping.

Q:What’s your lead time?
A:Generally speaking, our regular standard product will need 25-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depends on the specific orders

Q:What’s your payment term?
A:For all our new customers, we will need 40% deposite, 60% paid before shipment.

Q:When will you reply after got my inquiries?
A:We will response within 24 hours once get your inquires.

Q:How can I trust you to make sure my money is safe?
A:We are certified by the third party SGS and we have exported to over 85 countries up to June.2017. You can check our reputation with our current customers in your country (if our customers do not mind), or you can order via alibaba to get trade assurance from alibaba to make sure your money is safe.

Q:What’s the minimum order quantity?
A:Our minimum order quantity depends on different motor models, please email us to check. Also, we usually do not accept personal use motor orders. 

Q:What’s your shipping method for motors?
A:For samples and packages less than 100kg, we usually suggest express shipping; For heavy packages, we usually suggest air shipping or sea shipping. But it all depends on our customers’ needs.

Q:What certifications do you have?
A:We currently have CE and ROSH certifications.

Q:Can you send me your price list?
A:Since we have hundreds of different products, and price varies per different specifications, we are not able to offer a price list. But we can quote within 24 hours once got your inquirues to make sure you can get the price in time.

Q:Can I visit your company?
A:Yes, welcome to visit our company, but please let us know at least 2 weeks in advance to help us make sure no other meetings during the day you visit us. Thanks!

Weclome contact with us if have any questions about this motor or other products!

Application: Universal
Operating Speed: Low Speed
Structure and Working Principle: Brush
Certification: ISO9001, Ce, RoHS
Brand: Leison Motor
Effiency: Ie1
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

How is the efficiency of a gear motor measured, and what factors can affect it?

The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:

Measuring Efficiency:

The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:

Efficiency = (Pout / Pin) * 100%

The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:

Pout = T * ω

The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:

Pin = V * I

By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.

Factors Affecting Efficiency:

Several factors can influence the efficiency of a gear motor. Here are some notable factors:

  • Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
  • Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
  • Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
  • Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
  • Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
  • Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.

By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China factory 45mm 12V 24V 36V 48V High Torque Low Rpm Brush or Brushless DC Planetary Gear Motor with Encoder Option   vacuum pump oil	China factory 45mm 12V 24V 36V 48V High Torque Low Rpm Brush or Brushless DC Planetary Gear Motor with Encoder Option   vacuum pump oil
editor by CX 2023-10-20

China manufacturer 12V 24V 36V 48V 310V Electric DC Brushless DC Geared Servo Motor/ BLDC Motor with Encoder / Planetary Gearbox / Brake wholesaler

Product Description

12V 24V 36V 48V 310V Electric DC Brushless DC Servo Motor/ BLDC Motor with Encoder / Planetary Gearbox / Brake
 

Product Description

Product Name: Brushless DC Motor

Number of Phase: 3 Phase

Number of Poles: 4 Poles /8 Poles /10 Poles

Rated Voltage: 12v /24v /36v /48v /310v

Rated Speed: 3000rpm /4000rpm /or customized

Rated Torque: Customized

Rated Current: Customized

Rated Power: 23w~2500W

Jkongmotor has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

42mm 24V Brushless DC Motor Parameters:

Specification Unit Model
JK42BLS01 JK42BLS02 JK42BLS03 JK42BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 24      
Rated Speed Rpm 4000      
Rated Torque N.m 0.0625 0.125 0.185 0.25
Peak Current Amps 1.8 3.3 4.8 6.3
Rated Power W 26 52.5 77.5 105
Peak Torque N.m 0.19 0.38 0.56 0.75
Peak Current Amps 5.4 10.6 15.5 20
Back E.M.F V/Krpm 4.1 4.2 4.3 4.3
Torque Constant N.m/A 0.039 0.04 0.041 0.041
Rotor Inertia g.cm2 24 48 72 96
Body Length mm
Weight Kg
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

57mm 36V Brushless DC Motor Parameters:

Specification Unit Model
JK57BLS005 JK57BLS01 JK57BLS02 JK57BLS03 JK57BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 36
Rated Speed Rpm 4000
Rated Torque N.m 0.055 0.11 0.22 0.33 0.44
Rated Current Amps 1.2 2 3.6 5.3 6.8
Rated Power W 23 46 92 138 184
Peak Torque N.m 0.16 0.33 0.66 1 1.32
Peak Current Amps 3.5 6.8 11.5 15.5 20.5
Back E.M.F V/Krpm 7.8 7.7 7.4 7.3 7.1
Torque Constant N.m/A 0.074 0.073 0.07 0.07 0.068
Rotor Inertia g.cm2 30 75 119 173 230
Body Length mm 37 47 67 87 107
Weight Kg 0.33 0.44 0.75 1 1.25
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

60mm 48V Brushless DC Motor Parameters:

Specification Unit Model
JK60BLS01 JK60BLS02 JK60BLS03 JK60BLS04
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.3 0.6 0.9 1.2
Rated Current Amps 2.8 5.2 7.5 9.5
Rated Power W 94 188 283 377
Peak Torque N.m 0.9 1.8 2.7 3.6
Peak Current Amps 8.4 15.6 22.5 28.5
Back E.M.F V/Krpm 12.1 12.6 12.4 13.3
Torque Constant N.m/A 0.116 0.12 0.118 0.127
Rotor Inertia kg.cm2 0.24 0.48 0.72 0.96
Body Length mm 78 99 120 141
Weight Kg 0.85 1.25 1.65 2.05
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

80mm 48V BLDC Motor Parameters:

Specification Unit Model
JK80BLS01 JK80BLS02 JK80BLS03 JK80BLS04
Number Of Phase Phase 3
Number Of Poles Poles 4
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4
Rated Current Amps 3 5.5 8 10.5
Rated Power W 110 220 330 440
Peak Torque N.m 1.05 2.1 3.15 4.2
Peak Current Amps 9 16.5 24 31.5
Back E.M.F V/Krpm 13.5 13.3 13.1 13
Torque Constant N.m/A 0.13 0.127 0.126 0.124
Rotor Inertia g.cm2 210 420 630 840
Body Length mm 78 98 118 138
Weight Kg 1.4 2 2.6 3.2
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

86mm 48V Dc Brushless Motor Parameters:

Specification Unit Model
JK86BLS58 JK86BLS71 JK86BLS84 JK86BLS98 JK86BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 48
Rated Speed Rpm 3000
Rated Torque N.m 0.35 0.7 1.05 1.4 2.1
Rated Current Amps 3 6.3 9 11.5 18
Rated Power W 110 220 330 440 660
Peak Torque N.m 1.05 2.1 3.15 4.2 6.3
Peak Current Amps 9 19 27 35 54
Back E.M.F V/Krpm 13.7 13 13.5 13.7 13.5
Torque Constant N.m/A 0.13 0.12 0.13 0.13 0.13
Rotor Inertia g.cm2 400 800 1200 1600 2400
Body Length mm 71 84.5 98 111.5 138.5
Weight Kg 1.5 1.9 2.3 2.7 4
Sensor Honeywell
Insulation Class B
Degree of Protection IP30
Storage Temperature -25~+70ºC
Operating Temperature -15~+50ºC
Working Humidity 85% RH or below (no condensation)
Working Environment Outdoor (no direct sunlight), no corrosive gas, no flammable gas, no oil mist, no dust
Altitude 1000 CHINAMFG or less

110mm 310V Brushless Motor Parameters:

Specification Unit Model
JK110BLS050 JK110BLS75 JK110BLS100 JK110BLS125
Number Of Phase Phase 3
Number Of Poles Poles 8
Rated Voltage VDC 310
Rated Speed Rpm 3400
Rated Torque N.m 2.38 3.3 5 6.6
Rated Current Amps 0.5 0.6 0.8 1
Rated Power KW 0.75 1.03 1.57 2.07
Back E.M.F V/Krpm 91.1 91.1 91.1 88.6
Torque Constant N.m/A 0.87 0.87 0.87 0.845
Body Length mm 130 155 180 205
Sensor Honeywell
Insulation Class H

Stepping Motor Customized

Planetary Gearbox Type:

Detailed Photos

                                       Cnc Motor Kits                                                                                                   Brushless dc Motor with Brake

            Brushless Dc Motor with Planetary Gearbox                                                Bldc Motor with Encoder

 

                  Brushless Dc Motor                                                    Brushed Dc Motor                                                     Hybrid Stepper Motor

Company Profile

HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

dc motor

What is a DC motor, and how does it differ from other types of electric motors?

A DC (Direct Current) motor is an electric motor that converts electrical energy into mechanical motion. It operates based on the principle of electromagnetic induction and the interaction between current-carrying conductors and magnetic fields. DC motors are widely used in various applications due to their simplicity, controllability, and versatility. Here’s a detailed explanation of what a DC motor is and how it differs from other types of electric motors:

1. Basic Operation:

In a DC motor, electrical energy is supplied to the motor’s armature through a DC power source, typically a battery or a rectified power supply. The armature consists of multiple coils or windings that are evenly spaced around the motor’s rotor. The rotor is a cylindrical core with a shaft that rotates when the motor is energized. When current flows through the armature windings, it creates a magnetic field that interacts with the fixed magnetic field produced by the motor’s stator. This interaction generates a torque, causing the rotor to rotate.

2. Commutation:

DC motors employ a commutator and brushes for the conversion of electrical energy and the rotation of the rotor. The commutator consists of a segmented cylindrical ring attached to the rotor shaft, and the brushes are stationary conductive contacts that make contact with the commutator segments. As the rotor spins, the brushes maintain contact with the commutator segments, periodically reversing the direction of the current flow in the armature windings. This reversal of current flow in the armature windings ensures continuous rotation of the rotor in the same direction.

3. Types of DC Motors:

DC motors can be classified into different types based on their construction and the method of field excitation. The two main types are:

  • Brushed DC Motors: Brushed DC motors have a mechanical commutator and brushes to switch the current direction in the armature windings. These motors are relatively simple, cost-effective, and offer good torque characteristics. However, the commutator and brushes require regular maintenance and can generate electrical noise and brush wear debris.
  • Brushless DC Motors (BLDC): Brushless DC motors, also known as electronically commutated motors (ECMs), use electronic circuits and sensors to control the current flow in the motor windings. They eliminate the need for brushes and commutators, resulting in reduced maintenance and improved reliability. BLDC motors offer higher efficiency, smoother operation, and better speed control compared to brushed DC motors.

4. Speed Control:

DC motors provide excellent speed control capabilities. By adjusting the voltage applied to the motor, the speed of the DC motor can be regulated. Lowering the voltage reduces the motor’s speed, while increasing the voltage increases the speed. This feature makes DC motors suitable for applications that require precise speed control, such as robotics, conveyor systems, and electric vehicles.

5. Advantages and Disadvantages:

DC motors have several advantages, including:

  • Simple construction and easy maintenance (for brushed DC motors).
  • High starting torque.
  • Precise speed control.
  • Good controllability over a wide range of loads.

However, DC motors also have some limitations, such as:

  • Brushed DC motors require periodic maintenance and have limited brush life.
  • Brushed DC motors can generate electrical noise.
  • Brushless DC motors are often more expensive compared to brushed DC motors.

6. Differences from Other Electric Motors:

DC motors differ from other types of electric motors, such as AC (Alternating Current) motors, in several ways:

  • Power Source: DC motors require a DC power source, while AC motors operate from an AC power supply.
  • Speed Control: DC motors offer precise speed control by adjusting the applied voltage, whereas AC motors typically rely on frequency control for speed regulation.
  • Construction: DC motors use a commutator and brushes (in brushed DC motors) or electronic commutation (in brushless DC motors), while AC motors do not require commutation.
  • Starting Torque: DC motors typically provide higher starting torque compared to AC motors.

Overall, DC motors are versatile and widely used in various applications due to their controllability, speed regulation capabilities, and simplicity. The advancements inpower electronics and motor control technologies have further enhanced the performance and efficiency of DC motors, making them a popular choice in many industries.

dc motor

What role does commutation play in the operation of a DC motor?

In the operation of a DC (Direct Current) motor, commutation plays a crucial role in ensuring the continuous rotation of the motor and the conversion of electrical energy into mechanical motion. It is the process by which the direction of the current in the armature winding is periodically reversed to maintain a constant torque and facilitate the rotation of the motor. Here’s a detailed explanation of the role of commutation in the operation of a DC motor:

Commutation is necessary in a DC motor because the magnetic field generated by the armature winding needs to be constantly aligned with the stator’s magnetic field for efficient torque production. The stator of a DC motor typically consists of permanent magnets or electromagnets that create a fixed magnetic field. The armature winding, located on the rotor, produces a magnetic field that interacts with the stator’s field to generate torque.

The commutation process is achieved through the use of a commutator and brushes. The commutator is a cylindrical ring with multiple segments, while the brushes are conductive contacts that make physical contact with the commutator segments. The armature winding is connected to the commutator, and as the rotor spins, the brushes maintain contact with different segments.

As the rotor rotates, the commutator and brushes ensure that the direction of the current in the armature winding is reversed at specific intervals. This reversal of current flow is necessary to maintain a consistent torque in the same rotational direction. Without commutation, the torque generated by the motor would fluctuate in both magnitude and direction, leading to instability and erratic motor behavior.

The commutation process involves two stages: mechanical commutation and electrical commutation.

1. Mechanical Commutation: As the rotor rotates, the brushes make contact with different segments of the commutator. The segments are insulated from each other to prevent short circuits. When the brushes move from one segment to another, the current flowing through the armature winding is switched to a different coil or set of coils. This mechanical switching ensures that the magnetic fields produced by the winding are properly aligned with the stator’s field, resulting in continuous torque production.

2. Electrical Commutation: The reversal of current in the armature winding is achieved through electrical commutation. When the brushes make contact with a new commutator segment, the current flow in the winding is redirected to maintain the desired torque direction. The timing and sequence of the current reversal are critical to ensure smooth and efficient motor operation.

The commutation process in a DC motor is a dynamic and continuous operation. It allows for the conversion of electrical energy into mechanical motion by providing a consistent torque output. The efficiency and performance of the motor are greatly influenced by the quality and effectiveness of the commutation process.

In summary, commutation plays a vital role in the operation of a DC motor by ensuring the continuous rotation of the motor and the production of consistent torque. It involves the mechanical and electrical switching of the current direction in the armature winding, facilitated by the commutator and brushes.

dc motor

How does the size and power rating of a DC motor affect its suitability for different tasks?

The size and power rating of a DC (Direct Current) motor play crucial roles in determining its suitability for different tasks and applications. The size and power rating directly impact the motor’s performance characteristics, including its torque output, speed range, efficiency, and overall capabilities. Here’s a detailed explanation of how the size and power rating of a DC motor affect its suitability for different tasks:

Size of DC Motor:

The size of a DC motor refers to its physical dimensions, including its diameter, length, and overall volume. The size of the motor influences its ability to fit into specific spaces or applications with space constraints. Here are some key considerations regarding the size of a DC motor:

1. Space Limitations: In applications where space is limited, such as small robotic systems or compact machinery, smaller-sized DC motors are preferred. These motors provide a more convenient and efficient integration into the overall system design.

2. Weight Constraints: Certain applications, such as drones or lightweight robots, may have strict weight limitations. Smaller-sized DC motors are generally lighter, making them more suitable for weight-sensitive tasks where minimizing the overall system weight is essential.

3. Cooling and Heat Dissipation: The size of a DC motor can impact its ability to dissipate heat generated during operation. Smaller-sized motors may have less surface area for heat dissipation, which can lead to increased operating temperatures. In contrast, larger-sized motors typically have better heat dissipation capabilities, allowing for sustained operation under heavy loads or in high-temperature environments.

Power Rating of DC Motor:

The power rating of a DC motor refers to the maximum power it can deliver or the power it consumes during operation. The power rating determines the motor’s capacity to perform work and influences its performance characteristics. Here are some key considerations regarding the power rating of a DC motor:

1. Torque Output: The power rating of a DC motor is directly related to its torque output. Higher power-rated motors generally provide higher torque, allowing them to handle more demanding tasks or applications that require greater force or load capacity. For example, heavy-duty industrial machinery or electric vehicles often require DC motors with higher power ratings to generate sufficient torque for their intended tasks.

2. Speed Range: The power rating of a DC motor affects its speed range capabilities. Motors with higher power ratings can typically achieve higher speeds, making them suitable for applications that require rapid or high-speed operation. On the other hand, lower power-rated motors may have limited speed ranges, making them more suitable for applications that require slower or controlled movements.

3. Efficiency: The power rating of a DC motor can impact its efficiency. Higher power-rated motors tend to have better efficiency, meaning they can convert a larger proportion of electrical input power into mechanical output power. Increased efficiency is desirable in applications where energy efficiency or battery life is a critical factor, such as electric vehicles or portable devices.

4. Overload Capability: The power rating of a DC motor determines its ability to handle overloads or sudden changes in load conditions. Motors with higher power ratings generally have a greater overload capacity, allowing them to handle temporary load spikes without stalling or overheating. This characteristic is crucial in applications where intermittent or varying loads are common.

Overall, the size and power rating of a DC motor are important factors in determining its suitability for different tasks. Smaller-sized motors are advantageous in space-constrained or weight-sensitive applications, while larger-sized motors offer better heat dissipation and can handle heavier loads. Higher power-rated motors provide greater torque, speed range, efficiency, and overload capability, making them suitable for more demanding tasks. It is crucial to carefully consider the specific requirements of the application and choose a DC motor size and power rating that aligns with those requirements to ensure optimal performance and reliability.

China manufacturer 12V 24V 36V 48V 310V Electric DC Brushless DC Geared Servo Motor/ BLDC Motor with Encoder / Planetary Gearbox / Brake   wholesaler China manufacturer 12V 24V 36V 48V 310V Electric DC Brushless DC Geared Servo Motor/ BLDC Motor with Encoder / Planetary Gearbox / Brake   wholesaler
editor by CX 2023-10-20

China Brushless DC BLDC Motor Servo Encoder Brake Lawn Mower Planetary Motorel/Ectric Car Conversion Kit with Good quality

Merchandise Description

42BL Brushless DC Motor
Basic Information
Item Data
Tem Increase 50K max
Working Humidity 65%
Working Temperature (-30ºC~+85ºC)
Insulation Resistance 100MΩ min  250VDC
Surge Examination 350VAC for 3s
Insulation Class A
Drive Type Three period entire wave+PWM modulation 

 

Specification
Part Amount Rated Voltage Noload Velocity Noload Present Rated Torque Load Pace Load Recent Electricity Stall Recent Phases
VDC rpm±10% mA±10% mN.m rpm±10% mA±10% W A  
42BLS-01A forty five 7900 three hundred 87.5 6000 1600 55 five three

 

Probond motors types brush, brushless, stepper, hysteresis and linear motors to satisfy buyers specifications.

Our motors use normal and unique factors with customer chosen torque/speed needs that can be modified to your applications.

The AC/DC gear motors are primarily based on to unique magetic circuits that enhance motor style for higher speed reduced torque and minimal velocity higher torque.

These motors give you lower rotational losses, outstanding thermal transfer, interchangeable conclude caps, simply sealed. Alternatives include connectors, encoders, shaft modifications, dimensional alterations, and many others.

Probond motor owns expert income crew and engineer crew with much more than ten a long time knowledge in motor market, based mostly on China mainland dealing with overseas organization for a long time, we know your demands better than other individuals.

Probond Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our very hot items on market in 2017 with hugely high quality degree and aggressive price tag.

Remember to kindly make contact with us to get a catalogue.

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8

###

Samples:
US$ 25/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

42BL Brushless DC Motor
Basic Info
Item Data
Tem Rise 50K max
Working Humidity 65%
Working Temperature (-30ºC~+85ºC)
Insulation Resistance 100MΩ min  250VDC
Surge Test 350VAC for 3s
Insulation Class A
Drive Type Three phase full wave+PWM modulation 

###

Specification
Part Number Rated Voltage Noload Speed Noload Current Rated Torque Load Speed Load Current Power Stall Current Phases
VDC rpm±10% mA±10% mN.m rpm±10% mA±10% W A  
42BLS-01A 45 7900 300 87.5 6000 1600 55 5 3
Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8

###

Samples:
US$ 25/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

42BL Brushless DC Motor
Basic Info
Item Data
Tem Rise 50K max
Working Humidity 65%
Working Temperature (-30ºC~+85ºC)
Insulation Resistance 100MΩ min  250VDC
Surge Test 350VAC for 3s
Insulation Class A
Drive Type Three phase full wave+PWM modulation 

###

Specification
Part Number Rated Voltage Noload Speed Noload Current Rated Torque Load Speed Load Current Power Stall Current Phases
VDC rpm±10% mA±10% mN.m rpm±10% mA±10% W A  
42BLS-01A 45 7900 300 87.5 6000 1600 55 5 3

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China Brushless DC BLDC Motor Servo Encoder Brake Lawn Mower Planetary Motorel/Ectric Car Conversion Kit     with Good qualityChina Brushless DC BLDC Motor Servo Encoder Brake Lawn Mower Planetary Motorel/Ectric Car Conversion Kit     with Good quality
editor by czh 2023-01-26

China Long Life Round Brushless DC Gear Motor with Encoder or Planetary Gear with Hot selling

Merchandise Description

 

Solution Description

 

product Variety of poles Stage Rated voltage Rated velocity Ongoing locked-rotor torque Rated torque Rated power Peak torque
Units     VDC RPM N.m N.m W N.m
42BYA075B030C-02 four 3 24 3000 .192 .16 fifty .forty eight

 

design Peak present Torque continual Back EMF Motor duration Motor size voltage variety Selection of rotation bodyweight
Models A Nm/A V/KRPM g.cMoment of inertia mm VDC RPM Kg
42BYA075B030C-02 9.six .05 3.947 14.6 134 24~48 a thousand~3000 one.0 

Product Parameters

Quiet secure and reputable for lengthy existence operation

1.Voltage: 24 VDC
two.Quantity of phases: three
3.Amount of ranges: 4
4.Line-to-line resistance: 1.45±10%ohms
five.Line-to-line inductance: 1.27±20%mH
6.Rated current: 3.2A
seven.Rated power: 50W
8.No-load pace: 4300 rpm
9.Insulation course: B
10.Reduction ratio: 1:fifty eight.22
eleven.Output torque: 7.5 N.m
12.Output velocity: fifty one.5 rpm
13.We can design and style the specific voltage and shaft and so on

US $85-130
/ Piece
|
50 Pieces

(Min. Order)

###

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 8

###

Samples:
US$ 162/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

model Number of poles Phase Rated voltage Rated speed Continuous locked-rotor torque Rated torque Rated power Peak torque
Units     VDC RPM N.m N.m W N.m
42BYA075B030C-02 4 3 24 3000 0.192 0.16 50 0.48

###

model Peak current Torque constant Back EMF Motor length Motor length voltage range Range of rotation weight
Units A Nm/A V/KRPM g.cMoment of inertia mm VDC RPM Kg
42BYA075B030C-02 9.6 0.05 3.947 14.6 134 24~48 1000~3000 1.0 
US $85-130
/ Piece
|
50 Pieces

(Min. Order)

###

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 8

###

Samples:
US$ 162/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

model Number of poles Phase Rated voltage Rated speed Continuous locked-rotor torque Rated torque Rated power Peak torque
Units     VDC RPM N.m N.m W N.m
42BYA075B030C-02 4 3 24 3000 0.192 0.16 50 0.48

###

model Peak current Torque constant Back EMF Motor length Motor length voltage range Range of rotation weight
Units A Nm/A V/KRPM g.cMoment of inertia mm VDC RPM Kg
42BYA075B030C-02 9.6 0.05 3.947 14.6 134 24~48 1000~3000 1.0 

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Motor

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China Long Life Round Brushless DC Gear Motor with Encoder or Planetary Gear     with Hot selling	China Long Life Round Brushless DC Gear Motor with Encoder or Planetary Gear     with Hot selling
editor by czh 2022-12-21

China Dc Motor With Encoder

These DC motors are outfitted with gear agricultural Chain container and encoder. It uses 2 period or 2 stations (quadrature) incremental encoders to recognize the swiftness of the motor, route of rotation and the duration it has travelled.

Encoder suggestions knowledge permits you to control your motor acceleration and route successfully. DC motors with encoder feed back signal typically known as DC servo motors.

DC motors with encoder have obtained a lot of applications in robots, robot arm, CNC device and a number of other programs that want precise handle of acceleration, course and position. You can manage your engine employing microcontroller or arduino.

DC Motor Specifications

Voltage: 6:12 VDC
Output Electrical power: 2.2 W
Equipment Ratio: 1:75
Rated Velocity: 133 RPM
Rated Torque: 25.4 N.cm
Stall Existing: 3A
Encoder Variety: Corridor effect quadrature encoder 5v (keep track of situation and route of rotation)
Dimensions: 20 5 x 50 4 mm
Bodyweight: 100 and 20 g
Shaft Diameter: 4mm

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new 1 without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in 2 sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with 4 10-32 threaded holes on a 2-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of 1 planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality 1 will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China Dc Motor With Encoder

These DC motors are equipped with gear agricultural Chain container and encoder. It uses 2 stage or 2 stations (quadrature) incremental encoders to discover the swiftness of the motor, route of rotation and the length it has travelled.

Encoder comments knowledge allows you to control your motor acceleration and direction proficiently. DC motors with encoder feed back sign normally named DC servo motors.

DC motors with encoder have obtained several programs in robots, robotic arm, CNC machine and several other programs that want accurate manage of acceleration, course and place. You can management your engine using microcontroller or arduino.

DC Motor Specifications

Voltage: 6:twelve VDC
Output Power: 2.2 W
Gear Ratio: 1:75
Rated Pace: 133 RPM
Rated Torque: 25.4 N.cm
Stall Current: 3A
Encoder Kind: Hall affect quadrature encoder 5v (check place and route of rotation)
Dimension: 20 5 x 50 4 mm
Excess weight: 100 and 20 g
Shaft Diameter: 4mm

Benefits of a Planetary Motor

If you’re looking for an affordable way to power a machine, consider purchasing a Planetary Motor. These units are designed to provide a massive range of gear reductions, and are capable of generating much higher torques and torque density than other types of drive systems. This article will explain why you should consider purchasing 1 for your needs. And we’ll also discuss the differences between a planetary and spur gear system, as well as how you can benefit from them.

planetary gears

Planetary gears in a motor are used to reduce the speed of rotation of the armature 8. The reduction ratio is determined by the structure of the planetary gear device. The output shaft 5 rotates through the device with the assistance of the ring gear 4. The ring gear 4 engages with the pinion 3 once the shaft is rotated to the engagement position. The transmission of rotational torque from the ring gear to the armature causes the motor to start.
The axial end surface of a planetary gear device has 2 circular grooves 21. The depressed portion is used to retain lubricant. This lubricant prevents foreign particles from entering the planetary gear space. This feature enables the planetary gear device to be compact and lightweight. The cylindrical portion also minimizes the mass inertia. In this way, the planetary gear device can be a good choice for a motor with limited space.
Because of their compact footprint, planetary gears are great for reducing heat. In addition, this design allows them to be cooled. If you need high speeds and sustained performance, you may want to consider using lubricants. The lubricants present a cooling effect and reduce noise and vibration. If you want to maximize the efficiency of your motor, invest in a planetary gear hub drivetrain.
The planetary gear head has an internal sun gear that drives the multiple outer gears. These gears mesh together with the outer ring that is fixed to the motor housing. In industrial applications, planetary gears are used with an increasing number of teeth. This distribution of power ensures higher efficiency and transmittable torque. There are many advantages of using a planetary gear motor. These advantages include:
Motor

planetary gearboxes

A planetary gearbox is a type of drivetrain in which the input and output shafts are connected with a planetary structure. A planetary gearset can have 3 main components: an input gear, a planetary output gear, and a stationary position. Different gears can be used to change the transmission ratios. The planetary structure arrangement gives the planetary gearset high rigidity and minimizes backlash. This high rigidity is crucial for quick start-stop cycles and rotational direction.
Planetary gears need to be lubricated regularly to prevent wear and tear. In addition, transmissions must be serviced regularly, which can include fluid changes. The gears in a planetary gearbox will wear out with time, and any problems should be repaired immediately. However, if the gears are damaged, or if they are faulty, a planetary gearbox manufacturer will repair it for free.
A planetary gearbox is typically a 2-speed design, but professional manufacturers can provide triple and single-speed sets. Planetary gearboxes are also compatible with hydraulic, electromagnetic, and dynamic braking systems. The first step to designing a planetary gearbox is defining your application and the desired outcome. Famous constructors use a consultative modeling approach, starting each project by studying machine torque and operating conditions.
As the planetary gearbox is a compact design, space is limited. Therefore, bearings need to be selected carefully. The compact needle roller bearings are the most common option, but they cannot tolerate large axial forces. Those that can handle high axial forces, such as worm gears, should opt for tapered roller bearings. So, what are the advantages and disadvantages of a helical gearbox?

planetary gear motors

When we think of planetary gear motors, we 10d to think of large and powerful machines, but in fact, there are many smaller, more inexpensive versions of the same machine. These motors are often made of plastic, and can be as small as 6 millimeters in diameter. Unlike their larger counterparts, they have only 1 gear in the transmission, and are made with a small diameter and small number of teeth.
They are similar to the solar system, with the planets rotating around a sun gear. The planet pinions mesh with the ring gear inside the sun gear. All of these gears are connected by a planetary carrier, which is the output shaft of the gearbox. The ring gear and planetary carrier assembly are attached to each other through a series of joints. When power is applied to any of these members, the entire assembly will rotate.
Compared to other configurations, planetary gearmotors are more complicated. Their construction consists of a sun gear centered in the center and several smaller gears that mesh with the central sun gear. These gears are enclosed in a larger internal tooth gear. This design allows them to handle larger loads than conventional gear motors, as the load is distributed among several gears. This type of motor is typically more expensive than other configurations, but can withstand the higher-load requirements of some machines.
Because they are cylindrical in shape, planetary gear motors are incredibly versatile. They can be used in various applications, including automatic transmissions. They are also used in applications where high-precision and speed are necessary. Furthermore, the planetary gear motor is robust and is characterized by low vibrations. The advantages of using a planetary gear motor are vast and include:
Motor

planetary gears vs spur gears

A planetary motor uses multiple teeth to share the load of rotating parts. This gives planetary gears high stiffness and low backlash – often as low as 1 or 2 arc minutes. These characteristics are important for applications that undergo frequent start-stop cycles or rotational direction changes. This article discusses the benefits of planetary gears and how they differ from spur gears. You can watch the animation below for a clearer understanding of how they operate and how they differ from spur gears.
Planetary gears move in a periodic manner, with a relatively small meshing frequency. As the meshing frequency increases, the amplitude of the frequency also increases. The amplitude of this frequency is small at low clearance values, and increases dramatically at higher clearance levels. The amplitude of the frequency is higher when the clearance reaches 0.2-0.6. The amplitude increases rapidly, whereas wear increases slowly after the initial 0.2-0.6-inch-wide clearance.
In high-speed, high-torque applications, a planetary motor is more effective. It has multiple contact points for greater torque and higher speed. If you are not sure which type to choose, you can consult with an expert and design a custom gear. If you are unsure of what type of motor you need, contact Twirl Motor and ask for help choosing the right 1 for your application.
A planetary gear arrangement offers a number of advantages over traditional fixed-axis gear system designs. The compact size allows for lower loss of effectiveness, and the more planets in the gear system enhances the torque density and capacity. Another benefit of a planetary gear system is that it is much stronger and more durable than its spur-gear counterpart. Combined with its many advantages, a planetary gear arrangement offers a superior solution to your shifting needs.
Motor

planetary gearboxes as a compact alternative to pinion-and-gear reducers

While traditional pinion-and-gear reducer design is bulky and complex, planetary gearboxes are compact and flexible. They are suitable for many applications, especially where space and weight are issues, as well as torque and speed reduction. However, understanding their mechanism and working isn’t as simple as it sounds, so here are some of the key benefits of planetary gearing.
Planetary gearboxes work by using 2 planetary gears that rotate around their own axes. The sun gear is used as the input, while the planetary gears are connected via a casing. The ratio of these gears is -Ns/Np, with 24 teeth in the sun gear and -3/2 on the planet gear.
Unlike traditional pinion-and-gear reducer designs, planetary gearboxes are much smaller and less expensive. A planetary gearbox is about 50% smaller and weighs less than a pinion-and-gear reducer. The smaller gear floats on top of 3 large gears, minimizing the effects of vibration and ensuring consistent transmission over time.
Planetary gearboxes are a good alternative to pinion-and-gear drive systems because they are smaller, less complex and offer a higher reduction ratio. Their meshing arrangement is similar to the Milky Way, with the sun gear in the middle and 2 or more outer gears. They are connected by a carrier that sets their spacing and incorporates an output shaft.
Compared to pinion-and-gear reduces, planetary gearboxes offer higher speed reduction and torque capacity. As a result, planetary gearboxes are small and compact and are often preferred for space-constrained applications. But what about the high torque transfer? If you’re looking for a compact alt

China Good quality 63mm High Quality 12V 24V CZPT DC Worm Gear Motor with Encoder for Auto Door near me manufacturer

Product Description

63mm high top quality  12v 24v  Micro DC Worm Gear Motor with encoder for Vehicle Doorway
DC WORM Equipment MOTOR 63ZYJ Sequence cocurrent long term magnetism deceleration electrical motor is the direct-current premanent magnetism deceleration electric powered motor which is composed by the 63ZYseries cocurrent permanet magnetism electrical motor and the worm gear reducer.

WORM Gear MOTOR SPECIFICATION:
Voltage: 12V 24V 30V 60V
Present: 5A 11A, 2.5A, 5.5A

MOTOR Information:
Torque: one hundred thirty~320mNm pace: 3000rpm Electricity: forty~100w

DECELERATION MOTOR Data:
Torque: 1~4.3N. M Speed: 1~430RPM
Motor knowledge can be adjusted in accordance to cusotomers ask for!

1.Creation Description 

63mm diameter higher quality12V/ 24V DC worm equipment motor 

1.measurement:Diameter 63mm 
two.lifestyle time:5000 hours 
three.content:copper or plastic

63mm diameter substantial high quality twelve/24V DC WORM Gear MOTOR

Motor Standard  data:

Model: 63ZYT-WOG7080

Voltage: 12V, 24 V           Torque:4.3 N.m          Existing: 11 A

Pace: 94±10% rpm          Motor energy:eighty five W

The specificaitons can be adjusted , such as voltage, pace , power , shaft diameter can be done it in accordance to customers ask for.

two.Production Circulation

three.Organization Details

 In latest 10 many years, Derry has been dedicated to the manufacture of the motor items and the main items can be classified into the following collection, namely DC motor, DC gear motor, AC motor, AC gear motor, Stepper motor, Stepper gear motor, Servo motor and Linear actuator collection. 

Our motor items are broadly utilized in the fields of aerospace business, automotive sector, monetary gear, family appliance, industrial automation and robotics, medical equipment, place of work equipment, packing CZPT and transmission industry, supplying clients reliable tailored answers for driving and controlling.

four.Our Companies

1). General Services:

 

two). Customization Service:

Motor specification(no-load speed , voltage, torque , diameter, sound, existence, screening) and shaft duration can be tailor-produced in accordance to customer’s demands.

5.Deal & Shipping

        
 

The Fundamentals of a Equipment Motor

The standard mechanism driving the equipment motor is the principle of conservation of angular momentum. The scaled-down the gear, the more RPM it addresses and the larger the gear, the a lot more torque it generates. The ratio of angular velocity of two gears is named the gear ratio. Furthermore, the very same basic principle applies to numerous gears. This indicates that the course of rotation of each and every adjacent equipment is constantly the reverse of the 1 it is connected to.
Motor

Induction worm gear motor

If you’re hunting for an electric motor that can produce large torque, an Induction worm equipment motor may be the proper option. This type of motor utilizes a worm equipment hooked up to the motor to rotate a major equipment. Due to the fact this variety of motor is more successful than other types of motors, it can be utilized in applications requiring enormous reduction ratios, as it is in a position to offer much more torque at a reduce velocity.
The worm equipment motor is created with a spiral shaft that is set into splines in yet another equipment. The speed at which the worm gear rotates is dependent on the torque developed by the primary equipment. Induction worm equipment motors are ideal suited for use in minimal-voltage apps this sort of as electric vehicles, renewable vitality methods, and industrial equipment. They appear with a extensive selection of electrical power-source possibilities, such as twelve-volt, 24-volt, and 36-volt AC electrical power supplies.
These kinds of motors can be used in numerous industrial configurations, which includes elevators, airport products, foods packaging amenities, and far more. They also create considerably less noise than other types of motors, which helps make them a well-liked choice for makers with minimal place. The effectiveness of worm gearmotors can make them an exceptional selection for purposes the place sounds is an concern. Induction worm gear motors can be compact and really high-torque.
While the Induction worm gear motor is most commonly used in industrial apps, there are other varieties of gearmotors available. Some kinds are far more efficient than others, and some are much more high-priced than other people. For your application, deciding on the proper motor and gearbox mix is critical to attaining the preferred result. You may locate that the Induction worm equipment motor is an exceptional choice for numerous apps. The benefits of an Induction worm gear motor cannot be overstated.
The DC gear motor is an superb option for high-conclude industrial purposes. This type of gearmotor is smaller sized and lighter than a common AC motor and can provide up to two hundred watts of torque. A equipment ratio of three to two can be found in these motors, which tends to make them best for a vast range of applications. A higher-quality DC equipment motor is a great decision for several industrial apps, as they can be very effective and provide a substantial stage of reliability.
Electric equipment motors are a flexible and widely utilized kind of electric motor. Even so, there are some apps that do not advantage from them, such as apps with higher shaft speed and low torque. Purposes such as supporter motors, pump and scanning equipment are examples of such high-speed and higher-torque calls for. The most crucial thought when deciding on a gearmotor is its effectiveness. Choosing the right dimensions will make certain the motor runs successfully at peak performance and will very last for several years.
Motor

Parallel shaft helical equipment motor

The FC collection parallel shaft helical gearmotor is a compact, lightweight, and large-overall performance device that makes use of a parallel shaft construction. Its compact design and style is complemented by high transmission efficiency and high carrying capability. The motor’s materials is 20CrMnTi alloy metal. The device arrives with possibly a flanged input or bolt-on ft for installation. Its low sound and compact design and style make it an excellent option for a assortment of programs.
The helical gears are usually organized in two rows of 1 another. Every row includes one particular or much more rows of enamel. The parallel row has the teeth in a helical pattern, while the helical rows are lined up parallelly. In addition to this, the cross helical gears have a position contact style and do not overlap. They can be both parallel or crossed. The helical equipment motors can have any variety of helical pairs, each with a various pitch circle diameter.
The positive aspects of the Parallel Shaft Helical Gearbox include large temperature and strain dealing with. It is made by skilled specialists employing chopping-edge engineering, and is widely identified for its higher efficiency. It is available in a variety of technological specs and is custom made-manufactured to go well with personal demands. These gearboxes are durable and minimal-sound and function substantial dependability. You can expect to save up to forty% of your power by employing them.
The parallel shaft helical gear motors are designed to reduce the pace of a rotating portion. The nodular solid iron housing will help make the unit sturdy in hard environments, whilst the precision-machined gears provide peaceful, vibration-free of charge operation. These motors are obtainable in double reduction, triple reduction, and quadruple reduction. The ability ranges from .twelve kW to 45 kW. You can decide on from a broad selection of capacities, dependent on the size of your gearing needs.
The SEW-EURODRIVE parallel shaft helical gearmotor is a practical solution for room-constrained apps. The machine’s modular design and style enables for effortless mounting and a extensive selection of ambient temperatures. They are best for a variety of mechanical purposes, such as conveyors, augers, and much more. If you want a small footprint, the SEW-EURODRIVE parallel shaft helical equipment motor is the best answer for you.
The parallel shaft helical gears are beneficial for each substantial and minimal velocity applications. Parallel helical gears are also suited for lower velocity and lower duty apps. A very good illustration of a cross-helix equipment is the oil pump of an internal combustion motor. The two kinds of helical gears are highly reputable and supply vibration-totally free procedure. They are much more high priced than typical equipment motors, but offer much more longevity and efficiency.
Motor

Helical gear device

This helical equipment device is made to function under a range of demanding circumstances and can be used in a wide assortment of programs. Developed for lengthy daily life and large torque density, this gear device is offered in a variety of torques and gear ratios. Its design and development make it appropriate with a extensive assortment of essential mechanical methods. Frequent purposes include conveyors, material managing, steel mills, and paper mills.
Made for substantial-functionality apps, the Heidrive helical gear device supplies superior efficiency and value. Its revolutionary design and style permits it to perform properly below a broad selection of working problems and is extremely resistant to hurt. These equipment motors can be very easily combined with a helical gear unit. Their mixed electrical power output is a hundred Nm, and they have a large performance of up to ninety%. For far more data about the helical gear motor, speak to a Heidrive representative.
A helical gear device can be classified by its reference part in the regular plane or the turning airplane. Its middle gap is the same as that of a spur equipment, and its variety of teeth is the identical. In addition to this, the helical equipment has a lower axial thrust, which is one more critical attribute. The helical equipment unit is more effective at transferring torque than a spur equipment, and it is quieter, way too.
These units are created to manage huge masses. No matter whether you are utilizing them for conveyors, augers, or for any other application that requires high-pace motion, a helical equipment unit will supply optimum overall performance. A helical gear device from Flender can handle 400,000 jobs with a large degree of reliability. Its large efficiency and large resistance to load makes certain substantial plant availability. These equipment motors are offered in a assortment of measurements, from solitary-speed to multi-velocity.
PEC geared motors gain from a long time of style encounter and high high quality supplies. They are sturdy, tranquil, and offer superb overall performance. They are accessible in a number of configurations and are dimensionally interchangeable with other main brands. The gear motors are made as modular kits to reduce inventory. They can be equipped with further elements, these kinds of as backstops and followers. This helps make it easy to personalize your equipment motors and help save income even though decreasing fees.
One more kind of helical gears is the double helical gear. The double helical equipment device has two helical faces with a gap among them. They are much better for enclosed equipment techniques as they give increased tooth overlap and smoother efficiency. Compared to double helical gears, they are smaller sized and a lot more flexible than the Herringbone kind. So, if you happen to be searching for a equipment motor, a helical equipment unit may possibly be best for you.

China Good quality 63mm High Quality 12V 24V CZPT DC Worm Gear Motor with Encoder for Auto Door     near me manufacturer China Good quality 63mm High Quality 12V 24V CZPT DC Worm Gear Motor with Encoder for Auto Door     near me manufacturer

China Good quality Custom High Torque 24V DC Planetary Gear Robot Motor 24V BLDC Motor with Hall Encoder with Best Sales

Item Description

 Custom High Torque 24V DC Planetary Gear Robotic Motor 24V BLDC Motor with Hall Encoder
 
Model Number:KY80AS5714-15PGL60-10
Use:Boat, Automobile, Enthusiast
Certification:CE
Variety:Servo Motor
Torque:22N.M
Design:Long term Magnet
Commutation:Brushless
Safeguard Characteristic:Drip-evidence
Speed(RPM):150r/min
Constant Existing(A):22A
Output Power:400W
Voltage(V):24VDC
Effectiveness:IE 1
Application:robot
Item Title:24v bldc motor with hall encoder
Motor type:BLDC MOTOR
Search phrases:SERVO MOTOR
Rated Voltage:24VDC
Shade:Black
Diameter:80MM
Energy:400W
Rated velocity:1500 ten%rpm
MOTOR TORQUE:2.55N.M

Merchandise Description

 

Solution Characteristics:
*Higher Torque to inertia ratio&up to 15000Nm/kgm²
*Quick dynamic response *time continual <20ms
*Vast pace modifying&feedback up to a thousand:one
*Steady speed precision up to .5%
*High overload,2Mn/30s,3.5N.m/10s
*Small volume and light-weight
*Silent,the least expensive sound is only 45dB(A)
*Secured with IP65,Course F insulation
Market class
one.The altitude need to be in excess of 1000 meters earlier mentioned sea amount
2.Atmosphere temperature:+5ºC~+40ºC
three.The month regular tallest relative humidity is 90%,at the same the month regular most affordable temperature is significantly less than 25ºC.

Parameters

 

 

 

The Benefits of Utilizing a Equipment Motor

A gear motor performs on the basic principle of conservation of angular momentum. As the smaller gear addresses far more RPM and the bigger gear generates far more torque, the ratio amongst the two is greater than one particular. Likewise, a several gear motor follows the basic principle of energy conservation, with the path of rotation always opposite to the a single that is adjacent to it. It’s effortless to comprehend the concept powering gear motors and the numerous types obtainable. Go through on to discover about the different varieties of gears and their apps.

Electric powered motor

The decision of an electrical motor for gear motor is mostly dependent on the software. There are a variety of motor and gearhead combos available, and some are a lot more productive than others. Nonetheless, it is critical to comprehend the software needs and pick a motor that satisfies these wants. In this post, we’ll examine some of the advantages of making use of a gear motor. The pros and cons of each sort are briefly mentioned. You can buy new equipment motors at competitive charges, but they usually are not the most dependable or sturdy choice for your application.
To figure out which motor is best for your application, you will need to think about the load and pace needs. A gear motor’s efficiency (e) can be calculated by getting the input and output values and calculating their relation. On the graph below, the enter (T) and output (P) values are represented as dashed strains. The input (I) price is represented as the torque utilized to the motor shaft. The output (P) is the amount of mechanical power transformed. A DC gear motor is 70% effective at 3.75 lb-in / 2,100 rpm.
In addition to the worm equipment motor, you can also pick a compact DC worm equipment motor with a variable gear ratio from 7.5 to 80. It has a range of possibilities and can be custom-created for your specific software. The 3-period AC equipment motor, on the other hand, operates at a rated power of a single hp and torque of 1.143.2 kg-m. The output voltage is typically 220V.
One more important element is the output shaft orientation. There are two principal orientations for gearmotors: in-line and offset. In-line output shafts are most excellent for apps with higher torque and limited reduction ratios. If you want to keep away from backlash, select a right angle output shaft. An offset shaft can lead to the output shaft to turn into excessively scorching. If the output shaft is angled at a specific angle, it may be too massive or also small.
Motor

Equipment reducer

A equipment reducer is a specific type of speed decreasing motor, typically employed in big equipment, this sort of as compressors. These reducers have no cooling fan and are not made to manage weighty loads. Various needs demand distinct support elements. For occasion, a equipment that needs repeated rapidly accelerations and occasional load spikes demands a gear reducer with a large service issue. A equipment reducer that is created for lengthy creation shifts must be bigger than a equipment that employs it for quick periods of time.
A equipment reducer can lessen the pace of a motor by a aspect of two. The reduction ratio adjustments the rotation pace of the receiving member. This alter in speed is frequently required to fix troubles of inertia mismatch. The torque density of a gear reducer is calculated in newton meters and will depend on the motor used. The very first criterion is the configuration of the input and output shafts. A gear ratio of 2:1, for instance, means that the output speed has been reduce in half.
Bevel equipment reducers are a great option if the enter and output shafts are perpendicular. This kind is really sturdy and is ideal for circumstances where the angle amongst two axes is little. Nevertheless, bevel gear reducers are pricey and call for continual routine maintenance. They are normally utilised in heavy-duty conveyors and farm equipment. The right decision of gear reducer for gear motor is crucial for the efficiency and dependability of the system. To get the ideal equipment reducer for your application, speak to a certified company nowadays.
Deciding on a gear reducer for a gear motor can be tough. The improper one can destroy an entire equipment, so it is essential to know the specifics. You should know the torque and speed specifications and select a motor with the proper ratio. A gear reducer ought to also be suitable with the motor it is meant for. In some circumstances, a smaller motor with a gear reducer will function much better than a bigger one.
Motor

Motor shaft

Proper alignment of the motor shaft can tremendously enhance the overall performance and daily life span of rotating devices. The proper alignment of motors and pushed devices improves the transfer of energy from the motor to the instrument. Incorrect alignment prospects to extra noise and vibration. It could also guide to untimely failure of couplings and bearings. Misalignment also final results in improved shaft and coupling temperatures. That’s why, correct alignment is essential to boost the efficiency of the driven instrument.
When picking the proper variety of gear teach for your motor, you require to think about its vitality effectiveness and the torque it can manage. A helical geared motor is far more productive for substantial output torque programs. Based on the needed velocity and torque, you can decide on in between an in-line and a parallel helical geared motor. Both kinds of gears have their benefits and disadvantages. Spur gears are common. They are toothed and operate parallel to the motor shaft.
A planetary equipment motor can also have a linear output shaft. A stepping motor ought to not work at as well higher current to prevent demagnetization, which will direct to stage decline or torque fall. Make certain that the motor and gearbox output shafts are secured from external impacts. If the motor and gearbox are not protected from bumps, they may possibly lead to thread flaws. Make certain that the motor shafts and rotors are safeguarded from exterior impacts.
When choosing a metal for your equipment motor’s motor shaft, you should think about the value of very hot-rolled bar inventory. Its outer levels are a lot more tough to equipment. This variety of content includes residual stresses and other issues that make it hard to device. For these programs, you need to decide on a higher-power steel with tough outer levels. This type of metal is less costly, but it also has dimension factors. It’s greatest to test each material 1st to decide which a single satisfies your demands.
In addition to minimizing the speed of your system, a geared motor also minimizes the torque created by your device. It can be utilized with both AC and DC power. A substantial-quality equipment motor is essential for stirring mechanisms and conveyor belts. Nevertheless, you must decide on a geared motor that uses large-grade gears and supplies greatest performance. There are several varieties of planetary gear motors and gears on the industry, and it really is essential to choose the appropriate one.
Motor

1st phase gears

The initial phase gears of a equipment motor are the most crucial factors of the entire gadget. The motor’s electricity transmission is ninety% successful, but there are several aspects that can affect its overall performance. The equipment ratios utilised should be substantial ample to handle the load, but not too substantial that they are restricting the motor’s velocity. A equipment motor need to also have a wholesome security factor, and the lubricant should be ample to conquer any of these aspects.
The transmission torque of the gear modifications with its velocity. The transmission torque at the input aspect of the equipment decreases, transferring a tiny torque to the output aspect. The number of enamel and the pitch circle diameters can be utilized to estimate the torque. The very first stage gears of equipment motors can be classified as spur gears, helical gears, or worm gears. These 3 types of gears have diverse torque capacities.
The 1st stage helical gear is the most crucial element of a gear motor. Its operate is to transfer rotation from 1 equipment to the other. Its output is the gearhead. The second stage gears are linked by a carrier. They operate in tandem with the first phase gear to give the output of the gearhead. In addition, the initial phase carrier rotates in the same direction as the enter pinion.
Yet another critical element is the output torque of the gearmotor. When choosing a gearmotor, think about the starting torque, running torque, output speed, overhung and shock masses, duty cycles, and more. It is essential to pick a gearmotor with the right ratio for the application. By selecting the correct gearmotor, you will get maximum performance with nominal operating fees and enhance plant efficiency. For much more details on first stage gears, check out out our site.
The 1st stage of a gear motor is composed of a set of fastened and rotating sprockets. The very first phase of these gears functions as a push gear. Its rotational mass is a restricting issue for torque. The 2nd phase consists of a rotating shaft. This shaft rotates in the route of the torque axis. It is also the restricting force for the motor’s torque.

China Good quality Custom High Torque 24V DC Planetary Gear Robot Motor 24V BLDC Motor with Hall Encoder     with Best SalesChina Good quality Custom High Torque 24V DC Planetary Gear Robot Motor 24V BLDC Motor with Hall Encoder     with Best Sales